三维侧钻井钻进轨迹多目标智能优化算法的应用实验及结果分析
投稿时间:2022-05-07  修订日期:2022-06-14  点此下载全文
引用本文:
摘要点击次数: 40
全文下载次数: 0
作者单位邮编
黄雯蒂 中国地质大学(武汉) 430074
胡杰 中国地质大学(武汉) 430074
陆承达 中国地质大学(武汉) 430074
吴敏 中国地质大学(武汉) 430074
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目);国家自然科学基金青年项目;湖北省自然科学基金创新群体项目;高等学校学科创新引智计划项目
中文摘要:钻进轨迹多目标优化是实现高效、安全钻进的关键之一。随着优化算法性能的不断改进,求解轨迹优化问题能够得到具有更小轨迹长度、复杂度和中靶误差的轨迹设计方案,然而算法的实用性尚未得到验证。本文利用结合自适应罚函数的多目标分解进化算法、基于最小模糊熵的综合评价方法,解决三维侧钻井轨迹优化问题。将所提出的优化与决策方法在钻进过程智能控制实验系统中进行应用,验证了所提方法的实用性,能够为工程实际中的轨迹设计提供借鉴和指导,并为后续轨迹跟踪控制提供参考。
中文关键词:定向井  钻进轨迹  轨迹优化  多目标优化
 
Experiment and result analysis of multi-objective intelligent optimization algorithm application for drilling trajectory of 3D sidetracking well
Abstract:Multi-objective optimization of drilling trajectory is one of the keys to achieve efficient and safe drilling. With the improvement of the optimization algorithms, solving the trajectory optimization problem can get smaller trajectory length and less complexity. However, the practicability of a trajectory optimization algorithm has not been verified. In this paper, a 3D side tracking well trajectory optimization problem is studied by the multi-objective decomposition evolutionary algorithm combined with adaptive penalty function and the comprehensive evaluation method based on minimum fuzzy entropy. The practicability of the proposed methods are verified by applying them in the drilling process intelligent control experimental system, which can provide reference and guidance for trajectory design in engineering practice, and provide reference for drilling trajectory tracking control.
keywords:Directional well  Drilling trajectory  Trajectory optimization  Multi-objective optimization
  查看/发表评论  下载PDF阅读器