冷媒温度和渗流速度对富水砂层冻结温度场的 影响规律研究

温良涛

(中交第三公路工程局有限公司,北京101300)

摘要:针对天津地区地铁隧道施工中存在富水砂层等复杂水文地质条件下的冻结问题,通过室内模型试验和数值 模拟的结合,研究了冷媒温度和渗流速度对砂土冻结温度场、交圈时间和冻结壁发展的影响。研究结果表明:随着 冷媒温度降低,冻结管附近的温度梯度越陡,冻结壁也变得更厚。渗流存在时,渗流水将冷量从上游带到下游,阻 碍了冻结壁在上游方向的发展,同时在一定程度上推动了冻结壁在下游方向的发展,导致冻结壁厚度不均匀。最 终,冻结壁的形状从静水时的圆形发展为心形。在实际工程中,采用注浆等手段减缓渗流速度,并降低冷媒温度, 可缩短交圈时间,确保冻结进程顺利进行。

关键词:冻结法;冻结温度场;冻结壁;冷媒温度;渗流速度;模型试验;数值模拟;富水砂层 中图分类号:U455 文献标识码:A 文章编号:2096-9686(2024)02-0060-08

Law research on the effect of cold media tempreture and seepage velocity on the frozen tempreture field of the water-rich sand strata

WEN Liangtao

(CCCC Third Highway Engineering Bureau Co., Ltd, Beijing 101300, China)

Abstract: In response to the frozen issues in subway tunnel constuction in Tianjin area where complex hydrogeological conditions exist such as water-rich sand strata, the laboratory model experiments and numerical simulations was combined to investigate the effects of cold media tempreture and seepage velocity on the frozen temperature field, closure time, and growth of frozen walls in sandy soil. The research findings indicate that as the cold media tempreture decreases, the temperature gradient near the frozen pipe becomes steeper, and the frozen wall becomes thicker. In the presence of seepage, the seepage water transports cold energy from the upstream to the downstream, which impedes the development of the frozen wall to the upstream direction while promotes it to some extent to the downstream direction, which leads to the uneven thickness of the frozen wall. Ultimately, the shape of the frozen wall changes from circular in still water to heart-shape. In practical engineering, measures such as grouting to reduce the seepage velocity and lower cold media temperature can be used to cut the clolure time and finally ensure a smooth frozen process.

Kea words: frozen method; frozen tempreture field; frozen wall; cold media tempreture; seepage velocity; model experiment; numerical simulation; water-rich sand strata

0 引言

地铁隧道施工常面临复杂地质条件,其中富水 砂层成为重要问题,可能引发地下水突泉和隧道塌 陷等严重后果,严重威胁施工进展和地下工程安 全。因此,研究富水砂层的冻结特性、冻结温度场 与冻结壁发展过程,以及探索冻结的影响因素,对 地铁隧道工程十分重要。

冻结法因其环境影响小、强度高、隔水性好、适

作者简介:温良涛,男,1988年生,工程师,土木工程专业,从事隧道及轨道交通工程施工技术工作,天津市河西区微山路与东江道交口天津地 铁11号线一期工程项目经理部,373023963@qq.com。

收稿日期:2023-08-25;修回日期:2023-12-06 **DOI**:10.12143/j.ztgc.2024.02.009

引用格式:温良涛.冷媒温度和渗流速度对富水砂层冻结温度场的影响规律研究[J].钻探工程,2024,51(2):60-67.

WEN Liangtao. Law research on the effect of cold media tempreture and seepage velocity on the frozen tempreture field of the water-rich sand strata[J]. Drilling Engineering, 2024,51(2):60-67.

应性强等优点被广泛应用于隧道工程、盾构对接、 联络通道施工和基坑工程等项目施工^[1-8]。土体冻 结温度作为与冻结帷幕和施工推进时机相关的重 要参数,已经引起了许多学者的关注^[9]。特鲁巴 克^[10]建立了最早的冻结温度场理论。胡向东等^[11] 推导出了环形单圈冻结管稳态温度场的解析解和 外部冻结壁的厚度公式。此外,学者们还进行了一 系列关于人工冻结温度场影响因素的模型试验和 数值模拟,涉及单管冻结法中土体冻结温差、冻结 管直径和截面形状^[12-13]、冻结管吸热系数^[14]、冻结时 间^[15]、冷媒温度^[16-17]、未冻水^[18]等影响因素的研究, 以及多管冻结法中冻结孔环、径向间距^[19]等对冻结 壁交圈时间和冻结温度场分布的影响。同时,不同 土层的降温速度和冻结壁交圈时间也存在差异^[20], 亟需开展相关试验研究。

现阶段有关富水砂土的冻结特性以及温度场 发展规律还不明晰,不利于相关工程实践的开展。 本文采用试验和数值模拟相结合,建立双管冻结模 型,探究冻结砂土的温度场分布及影响因素。

1 冻结模型试验

1.1 试验参数缩比

通过相似准则将实际工程中的原位参数简化 为室内试验中便于操作的小尺度参数,对设计试验 方案、控制试验尺寸具有重要意义。

1.1.1 几何缩比

几何相似是指相应流场的几何形状相似,是模型试验中相似比设计的基础。考虑到铜管的制作工艺等因素,试验中采用Ø10 mm的铜管近似模拟工程现场Ø100 mm的冻结管,因此几何缩比为:

$$C_{\rm D} = D_{\rm p}/D_{\rm m} = 100/10 = 10$$

式中:D_p——原型冻结管管径;D_m——模型冻结管 管径。

1.1.2 时间缩比

时间相似是指原型试验中的时间与模型试验 中的时间满足一定的比例关系。由傅里叶相似准则,可得时间缩比 C₁=C²=100:1,即模型试验中冻 结时间1d相当于原型试验中冻结时间100 d。

1.1.3 渗流缩比

由弗劳德相似准则,可得渗流流速缩尺,即模型试验中渗流速度10m/d相当于原型试验中渗流 速度1m/d。

1.2 试验装置和模型参数

本试验针对富水砂土复杂水文地质条件下冻 结问题进行研究。试验装置包括渗流系统、冻结系 统和温度监测系统(见图1)。

图 1 试验设备 Fig.1 Experimental equipment

渗流系统包括水源水箱、模型箱、水泵、进出管路和流量计等设备。水源水箱的水通过进水管与模型箱相连接,经过模型箱中的土体后,从出水口流出,最后通过管道回到水源水箱,完成一个渗流循环。模型箱的两侧是蓄水室,室内填充了一定高度的卵石,以缓冲水流。箱体中间是冻结室,用于填充土样、布置冻结管和温度传感器。冻结室内土样从下往上依次是58 cm厚的砂土和2 cm的粘土,试验测定砂土的平均孔隙率为27.9%,平均渗透系数为1.496×10⁻⁴ m·s⁻¹。箱体外层铺设了1 mm的保温膜,内部设有50 mm的保温板,以实现保温隔热效果(见图2)。

冷冻系统包括制冷机、冻结管和保温材料等。 试验中使用CaCl₂溶液作为制冷介质,将其倒入密 闭式低温冷却液循环泵(DLSB-20/40型)的酒精槽 中,以使冷冻机进行循环制冷。冻结管选择 Ø10 mm 铜管,将其在中部弯折,制成 U型,模拟双冻结 孔试验。

温度检测系统包括K型热电偶传感器、 AT4532型多路温度测试仪等设备,用于实时监测 和收集温度场的动态数据。为了使模型试验与冻 结工程相符,试验因素的取值都基于现场参数按照 相似比计算获得,其中原型和模型材料具体参数 见表1。

实际工程中冻结管的间距一般取0.9~1.3 m。 本模型试验模拟实际工程中冻结管间距为1 m的情

图 2 模型箱 Fig.2 Model box

表1 原型和模型材料参数

Table 1 Parameters of the prototype and model materials

参数	原型	模型
模型箱(内部尺寸/墙体厚)/m	_	$(0.8 \times 0.7 \times 0.7)/(3.5 \times 10^{-3})$
冻结管外直径/m	0.1	0.01
冻结管管间距/m	1	0.1
冻结壁厚度/m	0.5	0.05

况,据几何相似比可知模型试验中冻结管的间距为 0.1 m。同时,本模型试验研究冻结壁厚度为模型冻 结管间距的一半,即为0.05 m。考虑到冻结壁的影 响范围是冻结壁厚度的4~5倍,则箱体的上游边界 与左右边界距冻结面距离 ≪0.2 m,箱体的上游边界 与左右两边界距冻结管距离 ≪0.2 m,箱体的上游边界 与左右两边界距冻结管距离 ≪0.25 m。箱体的下游 边界距冻结管的距离取为上游边界距冻结管距离 的1.5倍,则下游边界距冻结管0.375 m。可得冻结 室最小长度为0.25+0.375=0.625 m,最小宽度为 0.25×2+0.1=0.6 m。考虑到箱体边界会对冻结温 度场产生影响,将冻结室的长度定为0.8 m,宽度定 为0.7 m。箱体高度设计为0.7 m,以模拟厚度为7 m的含水地层。

 1.3 冻结方案及测温点布置 冻结壁的温度和厚度是冻结法施工的核心指 标,应综合考虑冻结管间距和冻结影响范围,设置 点位并及时检测冻结温度场的发展变化。

本试验设置了 32 个测温点。金属框架上布置 了 28 个传感器,两个冻结管的管壁各安装了1个传 感器,同时模型箱的进水口和出水口位置也各安装 了 1 个传感器。根据温度场的对称性,本文定义了 金属框架的主面、轴面和界面 3 个特征面。其中,主 面是指通过某一冻结管截面圆心并与渗流方向保 持一致的平面,轴面是指通过两冻结管截面圆心并 与渗流方向垂直的平面,界面则是指通过两冻结管 之间的中点并与渗流方向一致的平面。

金属框架界面上的传感器编号为J1~J10,其中 上游编号为J1~J5,距离两冻结管中心J6的距离依 次为200、100、50、30、10 mm;下游编号为J6~J10, 与上游关于轴面对称。主面上的传感器布置与界 面类似,编号为V1~V10。轴面上的传感器编号为 H1~H10,其中测点H1~H3距离冻结管中心分别 为100、60、25 mm。H6为两冻结管的中点,定义为 界点,用于判断冻结壁是否交圈(见图3)。

1.4 试验方案

在冻结箱中进行填土、布置传感器和固定冻结 管。为了保证砂土充分饱和,避免气泡对渗流过程 的影响,需要对砂土进行分层填筑并逐层压实,每 次填充时缓慢加适量的水,确保砂土充分饱和。冻 结管通过预设的钢管固定,底部距离冻结箱底10 cm。在距离箱底35 cm处水平放置金属框架,并布 设有传感器,用于监测冻结温度。

进行单变量冻结试验,研究渗流对冻结发展的 影响。本试验设置冻结温度为-25℃,分别模拟了 静水条件(v=0 m/d)和渗流条件(v=3 m/d)下温 度场的发展变化。

2 模型试验结果分析

2.1 静水条件下冻结结果分析

图 4 为静水条件(v=0 m/d)下,冻结温度为 -25℃时轴面和界面各测点随冻结时间的温度变 化过程。冻结过程可分为2个阶段:积极降温阶段 和温度稳定阶段。初期,土体与冻结管之间存在较 大的温差,导致强烈的热传导,测点温度迅速下降。 随着温差减小,降温速度逐渐减缓,最终趋于稳定。 界面靠近冻结管的测点的降温曲线在2~3h出现约 0.5h的平缓阶段,此阶段水正在凝固成冰,释放相 变潜热,导致降温过程受阻,降温速度下降。与此 同时,对称位置处的测点降温曲线差值较小且趋势 相似,显示出静水条件下温度场的对称性。

图5显示了特征面测点间隔3h的温度变化过

程。由图可见,在静水条件下,上下游的温度曲线 在轴面和界面上都具有明显的对称性,温度梯度基 本相同。然而,界面测点的温度曲线的对称轴未经 过界点,这可能是由于土层在填筑过程中厚度不均 或者金属框架未能保持水平放置所致,导致冷量传 递不均衡,进而使得对称测点的温度值不相等。

图 5 静水条件下特征面测点间隔 3 h温度变化 Fig.5 Temperature variation of measurement points on the characteristic surface at the interval of 3h in still water

2.2 渗流条件下冻结结果分析

图 6 描述了在渗流流速为 v=3 m/d,冻结温度 为-25 ℃时特征测点温度随着冻结时间的变化。 相较于静水条件,渗流条件下降温速度更缓,渗流 在一定程度上对冻结起到了阻碍作用。同时,越靠 近冻结管的测点(如轴面测点H4和H8)在短时间内 的温度下降幅度较大,迅速降至-25 ℃。这是因为 在制冷机的作用下,冷媒迅速降温,通过冻结管将 冷量快速传递到周围土体。而离冻结管较远的测 点由于受限于冷量传递范围,其温度变化较小。

由图7可看出,在有渗流条件下,轴面上的对称 测点对的温度依旧基本相等,说明轴面上温度场的 发展依旧是对称的;而界面的对称测点的温度呈现 出"处在上游位置的测点温度大于处在下游位置的

图 6 渗流条件下(v=3 m/d)测点温度随冻结时间变化 Fig.6 The temperature of the measurement points changes with the freezing time under seepage conditions (v=3 m/d)

测点温度"的情况,这是由于在渗流作用下,渗流水 将上游处的冷量带走,流到下游处,随时间推移,下 游处的冷量不断积累,最终导致上下游出现温度 差,渗流的存在使得温度场发展不均匀。

3 冻结温度场的数值模型

3.1 基本假定

为简化计算,对模型提出以下假设:(1)砂层为 饱和、连续、均匀、各向同性的多孔介质材料;(2)饱 和砂层内土骨架与渗流水温度相同;(3)水流方向 垂直于冻结管,砂层未冻结区的水渗流服从达西定 律,不考虑冻结区域对渗流的影响;(4)不考虑应力 场的影响;(4)不考虑冻结过程中热量散失。

3.2 数值计算模型及材料参数

本文采用COMSOL软件中的达西定律模块和 多孔介质传热模块。依据模型试验中冻结室的尺 寸,构建一个0.8 m×0.7 m的二维平面模型。冻结 管直径取0.01 m,冻结管间距取0.1 m。网格划分采 用较细分的网格类型。砂层的初始温度设置为 25℃,四周均为绝热边界。宽度方向的上、下边界

图 7 渗流条件下(v=3 m/d)特征面测点间隔 3 h 温度变化 Fig.4 Temperature changes of the measurement points on the characteristic surface at the interval of 3h under seepage conditions(v=3 m/d)

设置为透水边界,长度方向的左右边界以及冻结管 边界设置为不透水边界,模型计算时间设置为950 min。整个模型由土体骨架、水和冰3部分组成,其 中水和冰的物理性质根据前人研究成果^[21-22]和已有 试验数据进行确定,土骨架物理性质参数根据室内 试验获取^[23]。数值试验所需参数见表2。

3.3 静水条件下冻结结果分析

在冷媒温度为-20℃和-25℃的条件下,观察 稳定后的冻结温度场分布和冻结壁厚度。冻结壁 厚度是指从冻结管中心到0℃等温线的距离。稳定 后的冻结温度场呈现冻结管中心连线为对称分布, 如图8所示。较低的冻结温度导致更大的冻结速 率,使冻结锋面更快地向外推进,并在冻结管周围 形成更陡峭的温度梯度。稳定后形成的冻结壁更 厚,同时改善了砂层的物理性质,冻结后砂土的粘 聚力、内摩擦角、弹性模量和抗压强度等都有一定 程度的提高^[24]。因此,降低冷媒温度可以有效提高 冻结法施工质量。

3.4 渗流条件下冻结结果分析

图 9 和图 10 展示了在渗流条件下稳定后的冻

表 2 计算参数取值 Table 2 Calculated parameter values

参数	取值
土骨架密度ρ _s /(kg•m ⁻³)	2664
土骨架恒压热容 $C_{\rm s}/(J_{\rm \bullet}kg^{-1}{ m \bullet}K^{-1})$	826
土骨架比热率 γ _s	1
土骨架导热系数 $k_s/(W \cdot m^{-1} \cdot K^{-1})$	2.8
孔隙率n	0.28
水密度 $\rho_{\rm w}/(\rm kg \cdot m^{-3})$	1000
水比热率γ"	1
水导热系数 $k_w/(W \cdot m^{-1} \cdot K^{-1})$	0.55
水恒压热容 $C_w/(J\cdot kg^{-1}\cdot K^{-1})$	4200
水动力粘度µ/(Pa•s)	0.001793
冰密度 $\rho_i/(kg\cdot m^{-3})$	920
冰导热系数 $k_i/(\mathbf{W}\cdot\mathbf{m}^{-1}\cdot\mathbf{K}^{-1})$	2.2
冰恒压热容 $C_i/(J \cdot kg^{-1} \cdot K^{-1})$	2100
冰比热率	1
砂土渗透系数 $k/(m \cdot d^{-1})$	13

结温度场分布。与静水条件相比,渗流条件下双管 冻结壁的形状从圆形变为心形。这是因为渗流水 将冷量从上游带到下游,导致上下游的降温过程发 展不均,冻结壁沿着上游方向发展受到阻碍,沿着 下游方向发展受到推动作用,且下游因冷量的积累 使得降温的范围扩大。这种冻结壁发展速度的不 均匀性导致了冻结壁厚度的不均匀。

在相同的渗流速度下,温度越低,所形成的冻 结壁就越厚。在一定范围内,冷媒温度相同时,随 着渗流速度的增加,带走的热量也会增加,冻结管 周围形成陡峭的温度梯度,冻结壁较薄。相反,较 低的渗流速度下,冻结管周围温度梯度也相对较 缓,并形成较厚的冻结壁。

由图 11 看出,较低的冷媒温度会加速砂土的冻结过程,从而缩短交圈的时间。此外,渗流速度也

会对冻结交圈时间产生影响。在一定范围内,随着 渗流速度的增加,交圈时间明显延长,这说明渗流 对冻结有阻碍作用。在实际工程中,应采取一定措 施如注浆等减缓渗流速度,保证冻结顺利进行。

图11 冷媒温度、渗流速度与交圈时间关系

3.5 模型试验与数值试验的对比

图 12 展示了模型试验与数值试验结果的对比 情况,整体上,数值模拟结果(虚线)与模型试验数 据(实验)的趋势较为吻合。但在 J1 和 J10 的曲线 上,试验数据显示的温度变化较数值模拟结果为 缓。这可能源于模型试验中的一些的特定因素。 首先,模型箱可能存在一定的渗漏问题,导致实际 的渗流速度小于设定值,从而减小了渗流对冻结温 度场的影响,使得温度下降较慢。其次,模型试验 中冻结管的温度并非恒定,而是随着制冷机的工作 周期而波动,这可能影响了冻结管与土体之间的热 交换效率,进一步导致温度变化较缓。相反,在数 值模拟中,为简化计算,采用了一些理想化的假设, 如土体的热物理参数为常数,土体的初始温度均 匀,冻结管的温度恒定等。这些假设可能与实际情 况存在偏差,从而导致数值模拟结果的温度变化较 快。此外,在模型试验中,由于J5和J6位于冻结管 附近,因此在t=2~3h时出现了约0.5h的平缓阶 段。这个阶段水正在凝固成冰,释放相变潜热,导 致降温过程受阻,降温速度下降。而在数值模拟 中,降温过程较为理想,曲线较为平滑,因此在温度 曲线上,J5和J6的温度数据会比模拟结果偏低一 些。尽管存在这些差异,但误差仍在工程合理允许 的范围内,这验证了所建立的数值模型的合理性。

图 12 界面各测点温度变化对比曲线

Fig.12 Comparison curve of the temperature change of each measurement point on the interface

4 结论与建议

(1)无论是否存在渗流,冷媒温度都是影响冻结温度场和冻结壁厚度的关键因素。随着冷媒温度的降低,冻结壁的发展速度加快,形成的冻结壁

也更厚。

(2)在静水条件下,冻结温度场沿轴面和界面 方向均呈现出明显的对称性,冻结壁形状呈圆形, 厚度均匀。然而,在渗流条件下,渗流水将冷量从 上游带到下游,导致冻结壁厚度不均匀,形成心形 冻结壁。

(3)较低的冷媒温度可以加速砂土冻结过程, 缩短交圈时间。而渗流则对冻结过程产生阻碍,延 长交圈时间。

(4)在实际工程中,为提高冻结法施工质量,建 议降低冷媒温度,采用注浆等手段减缓渗流速度, 以确保冻结进程顺利进行。

参考文献(References):

- [1] 陈瑞杰,程国栋,李述训,等.人工地层冻结应用研究进展和展望[J].岩土工程学报,2000(1):43-47.
 CHEN Ruijie, CHENG Guodong, LI Shuxun, et al. Development and prospect of research on application of artificial ground freezing[J]. Chinese Journal of Geotechnical Engineering, 2000 (1):43-47.
- [2] 刘典基.冻结技术在地铁联络通道施工中的应用[J].西部探矿 工程,2004(12):110-111.
 LIU Dianji. Application of freezing technology in the construc-

LIU Dianji. Application of freezing technology in the construction of subway connection tunnels[J]. Western Exploration Engineering, 2004(12):110-111.

[3] 李方政.人工地层冻结的环境效应及其工程对策[J].公路交通 科技,2004(3):67-70.

LI Fangzheng. Study on the environmental effect and engineering measures for freezing method [J]. Journal of Highway and Transportation Research and Development, 2004(3):67–70.

- [4] 程桦.城市地下工程人工地层冻结技术现状及展望[J].淮南工 业学院学报,2000(02):17-22,64.
 CHENG Hua. Present situation and prospects of artificial frozen ground technology in city underground engineering [J]. Journal of Huainan Institute of Technology, 2000(2):17-22,64.
- [5] 翁家杰,陈明雄.冻结技术在城市地下工程中的应用[J].煤炭 科学技术,1997(7):51-53.
 WENG Jiajie, CHEN Mingxiong. The application of freezing technology in urban underground engineering [J]. Coal Science and Technology, 1997(7):51-53.
- [6] 马玉峰,苏立凡,徐兵壮,等.地铁隧道联络通道和泵站的水平 冻结施工[J].建井技术,2000(3):39-41.
 MA Yufeng, SU Lifan, XU Bingzhuang, et al. Horizontal freezing construction of subway tunnel connection passages and pump stations[J]. Mine Construction Technology, 2000(3):39-41.
- [7] 李敏,杜红普,李竹,等.开、闭条件下冻结温度场的差异性研究
 [J].现代隧道技术,2017,54(6):63-69.
 LI Min, DU Hongpu, LI Zhu, et al. Differences of freezing temperature field under opening and closing conditions [J]. Modern Tunneling Technology, 2017,54(6):63-69.

- [8] 李宏安,王定峰.冻结法在南京地铁隧道流砂地层中的应用
 [J].探矿工程(岩土钻掘工程),2005,32(3):60-62.
 LI Hong'an, WANG Dingfeng. Application of freezing in quick-sand within nanjing subway tunnel[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2005,32(3):60-62.
- [9] 袁云辉,杨平.冻结加固盾构端头土体温度场数值分析[J].地下空间与工程学报,2010,6(5):1053-1059.
 YUAN Yunhui, YANG Ping. Numerical analysis of soil thermal field in freezing reinforcement of shield arriving[J]. Chinese Journal of Underground Space and Engineering, 2010,6(5): 1053-1059.
- [10] 特鲁巴克.冻结凿井法[M].北京:煤炭工业出版社,1958.
 Trubakov. Freezing Drilling Method[M]. Beijing: Coal Industry Press, 1958.
- [11] 胡向东,陈锦,汪洋,等.环形单圈管冻结稳态温度场解析解
 [J].岩土力学,2013,34(3):874-880.
 HU Xiangdong, CHEN Jin, WANG Yang, et al. Analytical solution of steady-state temperature field for single-ring pipe freezing[J]. Rock and Soil Mechanics, 2013,34(3):874-880.
- [12] 威波,赵大军,潘殿琦,等.冷冻管直径对冻土冻结影响规律的 试验研究[J].探矿工程(岩土钻掘工程),2015,42(8):75-79.
 QI Bo, ZHAO Dajun, PAN Dianqi, et al. Experimental study on the influence law between frozen soil and freezing tube diameter [J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2015,42(8):75-79.
- [13] 胡俊,张皖湘,李艳荣.X形冻结管温度场变化规律研究[J].探 矿工程(岩土钻掘工程),2016,43(3):69-74.
 HU Jun, ZHANG Wanxiang, LI Yanrong. Study on the change rule of temperature field of X-shaped freezing tube[J].
 Exploration Engineering (Rock & Soil Drilling and Tunneling), 2016,43(3):69-74.
- [14] 王志良,申林方,谢建斌.人工冻结法单管冻结引起周围土体 温度场变化的研究[J].现代隧道技术,2014,51(1):110-116.
 WANG Zhiliang, SHEN Linfang, XIE Jianbin. On temperature field variation of the surrounding soil mass caused by artificial single pipeline freezing[J]. Modern Tunnel Technology, 2014,51(1):110-116.
- [15] 蒋斌松,王金鸽,周国庆.单管冻结温度场解析计算[J].中国 矿业大学学报,2009,38(4):463-466.
 JIANG Binsong, WANG Jinge, ZHOU Guoqing. Analytical calculation of temperature field for single-pipe freezing[J]. Journal of China Coal Society, 2009,38(4):463-466.
- [16] 靳巍巍,陈有亮.隧道冻结法施工三维有限元温度场及性状分析[J].地下空间与工程学报,2007(5):918-922.
 JIN Weiwei, CHEN Youliang. Three-dimensional temperature field and behavior analysis of tunnels constructed by artificial

freezing method [J]. Journal of Underground Space and Engineering, 2007(5):918-922.

[17] 翟国兵,赵大军,张金宝,等.制冷液温度对地下冷冻墙制冷效
 果影响的有限元分析[J].探矿工程(岩土钻掘工程),2015,42
 (6):53-58.

ZHAI Guobing, ZHAO Dajun, ZHANG Jinbao, et al. Finite element analysis on the influence of cooling liquid temperature on the refrigeration effect of underground frozen wall[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2015,42(6):53-58.

- [18] 周扬,周国庆.考虑未冻水单管冻结温度场解析解[J].煤炭学报,2012,37(10):1649-1653.
 ZHOU Yang, ZHOU Guoqing. Analytical solution for temperature field around a single freezing pipe considering unfrozen water[J]. Journal of China Coal Society, 2012,37(10):1649-1653.
- [19] 陈军浩,刘桐宇,李栋伟.人工三圈管冻结模型试验及冻结方 案研究[J].煤炭科学技术,2017,45(12):94-100.
 CHEN Junhao, LIU Tongyu, LI Dongwei. Study on artificial three-tube freezing model test and freeze program[J]. Coal Science and Technology, 2017,45(12):94-100.
- [20] 胡俊,杨平.大直径杯型冻土壁温度场数值分析[J].岩土力 学,2015,36(2):523-531.
 HU Jun, YANG Ping. Numerical analysis of temperature field within large-diameter cup-shaped frozen soil wall[J]. Rock and Soil Mechanics, 2015,36(2):523-531.
- [21] Anagnostou G, Sres A, Pimentel E. Large-scale laboratory tests on artificial ground freezing under seepage-flow conditions [J]. Géotechnique, 2012,62(3):227-241.
- [22] Vitel M, Rouabhi A, Tijani M, et al. Modeling heat and mass transfer during ground freezing subjected to high seepage velocities[J]. Computers and Geotechnics, 2016,73:1–15.
- [23] 齐玉萌.地下水渗流作用下人工冻土冻结特性研究[D].天津:天津大学,2019.
 QI Yumeng. Study on characteristics of artificial frozen soil under seepage-flow condition [D]. Tianjin: Tianjin University, 2019.
- [24] 孙杰龙,任建喜,李盛斌,等.不同低温温度下砂土物理力学特 性试验研究[J].延安大学学报(自然科学版),2019,38(3): 38-44.

SUN Jielong, REN Jianxi, LI Shengbin, et al. Experimental study on the physical mechanics characteristics of sand under different frozen temperatures [J]. Journal of Yan'an University: Natural Science Edition, 2019,38(3):38-44.

(编辑 王文)