# 汶川地震断裂带科学钻探一号孔(WFSD-1) 不同取心方法的应用效果分析

尤建武,曹其友,杨明奇,王志祥

(四川省地质矿产勘查开发局四○三地质队,四川 峨眉山 614200)

摘 要:针对因地震造成的复杂地层,在汶川地震断裂带科学钻探一号孔(WFSD-1)钻探施工中,为了保证岩心的采取率和原状性,满足地震机理研究需要,长孔段采用多型号多规格半合管取心工艺技术,确保全孔岩心采取率高达94.3%及岩心原状性好的目的,从而满足了汶川地震地学研究的需要。

关键词:科学钻探;汶川地震断裂带;复杂地层;取心方法;半合管;采取率;原状性

中图分类号:P634 文献标识码:A 文章编号:1672-7428(2009)12-0009-04

Analysis on Application Results of Different Coring Methods in the Hole WFSD – 1 of Wenchuan Earthquake Fault Scientific Drilling Project/YOU Jian-wu, CAO Qi-you, YANG Ming-qi, WANG Zhi-xiang (403 Geological Brigade of Sichuan Exploration and Development Bureau of Geology and Mineral Resources, Emeishan Sichuan 614200, China)

Abstract: Multi-type and multi-size split barrel coring technology were used in the hole WFSD – 1 of Wenchuan earthquake fault scientific drilling project to ensure high core recovery rate and keep the cores in original state even in very complicated formation conditions. As a result, 94.3% of core recovery was achieved and the cores were in good original state, which meet the requirement of geo-scientific research.

**Key words:** scientific drilling; Wenchuan earthquake fault; complicated rock formation; coring method; split core barrel; core recovery rate; original state

汶川地震断裂带科学钻探项目一号孔(WFSD-1)所在的龙门山断裂带,历史上发生过许多次地震,每次地震都给地下岩石带来极大的破坏。因此,钻遇的岩层破碎严重,取心困难。为了保证岩心的采取率和原状性,满足地震研究需要,全孔主要采用半合管取心方法。

#### 1 取心概况

按地质设计, WFSD - 1 孔全孔取心, 而地层破碎取心难度大, 为满足岩心采取率高、原状性好的要求, 我队经过多种口径、多种类型取心钻具试验, 最终选用先进的提钻、绳索半合管取心工艺技术。

全孔使用半合管取心钻进 842.64 m,占全孔钻进取心总进尺 1384.26 m的 60.87%,全孔平均采取率 94.3%,取得的岩心原状性好,有效地揭示了地层产状、构造及主断层,地质信息真实、可靠、代表性强,受到了地学研究人员的好评。

# 2 WFSD-1 孔地层情况

WFSD-1 孔地层为:0.00~585.75 m 为火山凝灰岩,693.37~1201.15 m 为三叠系须家河组砂岩和泥岩。钻遇地层主要表现为涌水、破碎、掉块和缩径等特征,具体情况如下。

- (1)上部火山凝灰岩:灰黑色,岩石可钻性级别为7~9级,由于受地质构造及地震活动影响,岩心破碎(见图1)、裂隙发育、孔内涌水,最大涌水量200 t/d,水头最高达5.0 m(见图2)。由于长孔段裸眼顶涌钻进,钻进过程中常出现岩心堵塞、垮塌、掉块、卡钻等复杂情况,钻孔严重超径(见图3),给钻探施工带来很大困难。
- (2)断层泥:地层为黑色断层泥(见图 4),含角砾岩、泥岩、炭质页岩等。断层泥具有塑性流动性和较强的膨胀性,采心时需要拆掉扩孔器才能把内管取出,钻取的断层泥岩心直径从 66 mm 很快可膨胀到 75 mm(见图 5),直径线性膨胀率 11.94%,常有钻具内管涨开情况。

收稿日期:2009-11-20

基金项目:科技部科技支撑计划专项"汶川地震断裂带科学钻探(WFSD)"项目之"科学钻探与科学测井"课题

作者简介:尤建武(1958-),男(汉族),安微人,四川省地质矿产勘查开发局四〇三地质队副队长、高级工程师,探矿工程专业,从事钻探工程经营管理及技术工作,四川省峨眉山市兴隆街1号;曹其友(1958-),男(汉族),四川仁寿人,四川省质矿产勘查开发局四〇三地质队副总工程师、高级工程师,探矿工程专业,从事钻探技术及管理工作。

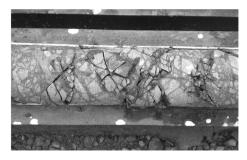



图 1 火山凝灰岩的破碎岩心



图 2 上部孔段涌水情况

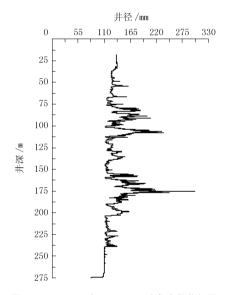



图 3 WFSD-1 孔 275.14 m 以浅孔段井径图



图 4 断层泥岩心

(3)下部沉积砂岩、泥岩:砂岩呈灰白色,含泥较重、手触摸含沙、手搓呈粉状、软且较完整。随着钻孔



图 5 被断层泥胀开的半合管

延伸砂岩变硬、致密,呈灰黑色(见图 6),局部孔段破碎、掉块,钻进中易发生岩心堵塞、卡钻等情况。



图 6 长石石英砂岩中的地震裂纹

## 3 WFSD-1 孔取心钻进技术指标

WFSD-1 孔钻进使用的钻具以及配套取心工 艺技术指标详见表 1。

通过表1可知,所采用的不同钻具以及配套取心工艺在采取率方面均能达到85%,但是单管取心或双管钻具配普通内管取心方法不能保持岩心原状性。该孔不但要求岩心采取率高,还要求岩心的原状性好。通过不断实践、摸索,确定选用先进的半合管取心钻具,有效保证了岩心采取率和岩心原状性,满足了地学研究要求。

## 4 半合管的结构、工作原理及优缺点

我们在施工中采用了提钻取心半合管及绳索取 心半合管两种不同型号和规格的半合管。

- 4.1 SDB110、SDB94 提钻取心半合管双级单动双管 4.1.1 半合管结构
- (1)半合管通过销钉定位,上端与内管接头内螺纹相连,下端与定中环相连,兼起抱紧半合管作用。
- (2)半合管的中部抱紧机构通过开口钩头抱箍与梯形槽相配合。半合管上 20~30 cm 间距车削一道环槽,每道环槽中开有两条轴心槽缝,槽缝呈梯形分布;开口抱箍两端带钩头。由于梯形槽在不同位置所夹大弧长度不同,但抱箍钩头由上端进入槽缝,然后推到下端位置,则将半合管抱紧。

|               | 衣! 珀进                                            | <b></b>         | - 以及癿去   | い 上 乙   | 汉小旧  | 小衣       |         |      |         |        |
|---------------|--------------------------------------------------|-----------------|----------|---------|------|----------|---------|------|---------|--------|
| 孔段号           | 取心方法                                             | 开始孔深            | 截止深度     | 进尺      | 回次   | 平均回次     | 纯钻时间    | 小时效率 | 台效      | 采取     |
|               | <b>取心刀伝</b>                                      | /m              | /m       | /m      | 数    | 进尺/m     | /h      | /m   | /m      | 率/%    |
|               | 金刚石单管+投卡料取心                                      | 0.00            | 6. 16    | 6. 16   | 13   | 0. 47    | 10.42   | 0.59 | 184. 80 | 90.42  |
|               | SDBØ110 单动双管卡簧取心                                 | 6. 16           | 34. 14   | 34, 99  | 55   | 0. 64    | 47. 17  | 0.74 | 87. 50  | 89. 03 |
| WFSD - 1      | 5000110 中郊双目下東双心                                 | 66. 12          | 73. 13   | 34. 99  |      |          |         |      |         |        |
|               | Ø122 金刚石钻头 + SDBØ110 单动双管<br>+ YZX98 液动冲击器钻进卡簧取心 | 34. 14          | 66. 12   | 31. 98  | 30   | 1. 07    | 43.50   | 0.74 | 287. 82 | 95.68  |
|               | SDBØ110 金刚石单动双管 + 半合管卡<br>簧取心                    | 73. 13          | 304. 26  | 231. 13 | 174  | 1. 33    | 189. 50 | 1.22 | 180. 10 | 93. 04 |
|               | Ø112 金刚石单管钻进,投卡料取心                               | 166.88          | 179. 85  | 12. 97  |      |          | 割套管、    | 扫孔等  |         |        |
| WFSD - 1 - S1 | SDBØ110 金刚石单动双管 + 半合管卡<br>簧取心                    | 179. 85         | 184. 67  | 4. 82   | 7    | 0. 69    | 8.75    | 0.55 | 192. 80 | 93. 36 |
|               |                                                  | 184. 67         | 194. 91  | _       |      |          |         |      |         |        |
|               | HQ 绳索取心 + 普通内管卡簧取心                               | 240.62          | 275. 45  | 60. 86  | 39   | 1.56     | 40.92   | 1.49 | 556.08  | 94.94  |
|               |                                                  | 291.84          | 307. 63  |         |      |          |         |      |         |        |
|               |                                                  | 194. 91         | 240. 62  | 368. 85 | 350  | 1. 05    | 337. 83 | 1.09 | 151.48  |        |
|               | HQ 绳索取心 + 半合管卡簧取心                                | 275.45          | 291. 84  |         |      |          |         |      |         | 93.03  |
|               |                                                  | 307.63          | 614. 38  |         |      |          |         |      |         |        |
|               | Ø94 金刚石单管钻进,投卡料取心                                | 614. 38         | 614. 69  | 0.31    | 1    | 0.31     | 0. 5    | 0.62 | 18.35   | 90.30  |
|               | SDBØ94 单动双管 + 半合管卡簧取心                            | 614. 69         | 625. 80  | 11. 11  | 6    | 1. 85    | 11.08   | 1.00 | 163. 25 | 91.18  |
| WFSD - 1 - S2 | LZ-89 连续造斜器侧钻                                    | 580. 07 583. 07 |          |         | 3.00 | 全面钻进,无岩心 |         |      |         |        |
|               | Ø94 金刚石单管钻进,投卡料取心                                | 583.07          | 585.75   | 2. 68   | 3    | 0.89     | 5.75    | 0.47 | 89.06   | 70.90  |
|               | SDBØ94 单动双管 + 半合管卡簧取心                            | 585.75          | 809. 82  | 224. 07 | 154  | 1.46     | 271.08  | 0.83 | 112.52  | 96.87  |
|               | SDBØ75 单动双管 + 半合管卡簧取心                            | 809.82          | 812.48   | 2. 66   | 4    | 0. 67    | 4. 25   | 0.63 | 52.95   | 96. 24 |
|               | NQ 绳索取心 + 普通内管卡簧取心                               | 812.48          | 1201. 15 | 388. 67 | 206  | 1. 89    | 304.67  | 1.28 | 407.34  | 99. 29 |

表 1 钻进使用的钻具以及配套取心工艺技术指标表

注:WFSD-1-S1、WFSD-1-S2 为侧钻孔。

(3)半合管通过平口连接。

#### 4.1.2 组装及拆卸程序

- (1)组装程序:①将半合管通过定位销定位合拢;②依次用抱箍从半合管槽上部装入槽缝,注意抱箍梯形开口钩头与梯形槽缝方向一致。抱箍钩头先插入无倒边的槽缝,后另一端插入倒边的槽缝。然后用螺丝刀及榔头将抱箍向下推到最紧的位置。
- (2)拆卸程序:①先卸下钻头,然后卸下卡簧座、定中环,接着卸下外管;②卸下半合管,将装了岩心的半合管平放到地板上,用螺丝刀依次将抱箍推到环槽上端,把抱箍取出。撬抱箍时应先撬槽缝开有倒边的一端,然后撬另一端,再将半合管打开,在岩心上盖好 PVC 半边管,再将岩心翻在岩心槽里。

## 4.1.3 半合管优缺点

优点:半合管是一根整体,同心度好,不易变形, 使用寿命较长。

缺点:需提钻采心,劳动强度大,卡箍易坏。

#### 4.2 HQ、NQ 绳索半合管取心单动双管

#### 4.2.1 半合管结构

- (1)半合管上端与内管总成接头外螺纹相连, 下端与卡簧座内螺纹相连。
- (2)半合管为"三合一"结构,由1根0.9~0.95m长普通半合管和2根0.9~0.95m长半合管通过

- 3 个 0.1 ~ 0.12 m 长接头连接而成。接头起连接、保证半合管强度及方便取心的作用。
- (3)每根0.9~0.95 m 长半合管由3~4个企口连接而成。

#### 4.2.2 组装及拆卸程序

- (1)组装程序:①先将普通内管和接头连接好; ②依次将2节半合管与普通内管连接成一体。
- (2)拆卸程序:①先卸下钻头,然后卸下外管,接着卸下卡簧座;②卸下半合管,先拆卸下面一节半合管,然后拆卸该节半合管接头,再拆卸第二节半合管,接着拆卸该节半合管接头,然后将半合管打开,在岩心上盖好 PVC 半边管,将岩心翻在岩心槽里。

## 4.2.3 半合管优缺点

优点:绳索打捞采心,劳动强度小。

缺点:半合管由短管连接而成,同心度差,由于 壁薄(3~3.5 mm),半合管易变性,使用寿命较短。

#### 4.3 辅助措施

加强泥浆润滑性,减小岩心入管阻力,增加树心能力。

## 5 半合管取心在主断层中的使用效果

585.75~693.37 m 孔段为汶川地震的主断层, 在地应力的作用下该层的泥质岩石具有极强的膨胀 性和流变性,导致强烈的钻孔缩径。为此,在施工中采用高密度(密度最高达 1.60 g/cm³)、低失水(失水量为 3.2~4.0 mL/30 min)的泥浆体系,达到平衡地层应力和防止水敏缩径的目的。在施工中严格执行提钻回灌泥浆的措施。在断层泥孔段,采用半合管提钻取心须控制回次进尺长度,下钻时必须扫孔,防止在钻进期间由于钻孔缩径"抱死"钻具。

采用半合管提钻取心在主断层钻进,可控制回次进尺,增加起下钻次数,达到少进、多提、多扫孔,防缩径"抱死"钻具。但采用该措施小时效率仅达 0.82 m,纯钻时间利用率才 15.48%,由于每个回次都要在600~670 m 孔段反复扫孔,因而大大降低了钻进综合效率。585.75~812.48 m 主断层与812.48~1201.15 m NQ 绳索取心钻进技术指标统计见表 2。

表 2 提钻半合管钻进与 NQ 绳索取心普通内管钻进技术指标统计表

| 取心方法    | 孔段/m               | 台效/m    | 小时效<br>率/m |      |       |        | 提钻时间<br>占用率/% |       |       |        |
|---------|--------------------|---------|------------|------|-------|--------|---------------|-------|-------|--------|
| 半合管提钻取心 | 585. 75 ~ 812. 48  | 91. 76  | 0. 82      | 1.44 | 3.06  | 15. 48 | 41. 97        | 8. 52 | 4. 94 | 29. 09 |
| NQ 绳索取心 | 812. 48 ~ 1201. 15 | 407. 34 | 1. 28      | 1.89 | 13.58 | 44. 35 | 49. 89        | 1.45  | 0     | 4. 31  |

## 6 采用半合管取心钻进存在的问题

为保证地震科研需要,全孔基本采用半合管取心方法,虽然保证了岩心采取率和岩心原状性,但在

施工时存在诸多问题与不足,钻进效率远低于普通 内管取心方法。HQ 绳索普通内管取心与 HQ 绳索 半合管取心的技术指标对比见表 3。全孔半合管取 心与普通内管取心钻进效率对比见表 4。

表 3 WFSD – 1 – S1 孔 HQ 绳索普通内管取心与 HQ 绳索半合管取心的技术指标对比表

| 钻进工艺         | 起                    | 止       | 71     | 怒 /                      | 进尺      | 回次  | 平均回次  | 纯钻时间   | 辅助时间   | 小时效   | 台效     | 采取     |
|--------------|----------------------|---------|--------|--------------------------|---------|-----|-------|--------|--------|-------|--------|--------|
| 铂 进 丄 乙      |                      |         | 1L     | (木/m                     | /m      | 数   | 进尺/m  | 利用率/%  | 占用率/%  | 率/m   | /m     | 率/%    |
| 普通内管 + HQ 绳索 | 184. 67 ~ 194. 91 、2 | 240. 62 | 2 ~ 2  | 75. 45 291. 84 ~ 307. 63 | 60. 86  | 39  | 1.56  | 49. 73 | 21. 63 | 1.49  | 556.08 | 94. 94 |
| 半合管 + HQ 绳索  | 194. 91 ~ 240. 62 \2 | 275. 45 | 5 ~ 29 | 91. 84 307. 63 ~ 614. 38 | 368. 85 | 350 | 1. 05 | 48.06  | 51. 92 | 1. 09 | 169.95 | 93.06  |

表 4 全孔半合管取心与普通内管取心钻进效率对比表

| 钻 进 工 艺                            | 进尺/m    | 小时效率/m   | 台月效率/m   | 回次进尺/m   | 纯钻利用率/%  |
|------------------------------------|---------|----------|----------|----------|----------|
| SDB110、94、75 半合管提钻取心及 HQ 绳索半合管取心钻进 | 842. 64 | 1. 02    | 143. 97  | 1. 21    | 19. 52   |
| SDB110 普通内管提钻取心及 HQ、NQ 绳索普通内管取心钻进  | 484. 52 | 1. 23    | 271. 73  | 1.62     | 30. 59   |
| 半合管取心与普通内管取心对比/%                   |         | - 17. 07 | - 47. 02 | - 25. 31 | - 36. 19 |

分析表 3 的数据可知,使用绳索半合管取心与使用绳索普通内管取心相比:台效降低 69.44%,小时效率降低 26.85%,纯钻时间利用率降低 3.36%,平均回次进尺降低 32.69%,辅助时间占用率增加 140%,采取率降低 1.98%。

同样从表 4 数据看出,全孔使用半合管取心的 小时效率、台月效率、回次进尺及纯钻时间利用率等 技术指标均低于普通内管取心。

根据使用情况,分析绳索半合管取心钻进存在的问题与不足是:

- (1)绳索半合管长度仅 1.0~1.5 m,回次进尺短、打捞次数多,相应辅助时间多;
- (2)绳索取心半合管因尺寸级配要求,管壁薄、 刚度差,容易变形损坏,平均每套半合管寿命仅 30.74 m,因此成本较高;
- (3)破碎地层钻进堵管时易将半合管顶涨变形,造成半合管过不了HQ钻具的座环,因此造成不必要的非正常提钻,平均提钻长度17.56 m,发挥不

了绳索取心少提钻的优势;

(4)采取岩心相对麻烦,普通内管采心平均 5 min,采用绳索半合管采心需 15 min,辅助时间增加。

## 7 采用半合管取心钻进的体会

- (1)采用半合管取心钻进的钻探综合技术指标 均低于普通内管取心,钻探成本相应增大。因此,考 虑其综合经济指标,认为除特殊项目及孔段外不宜 长孔段采用。
- (2)国产半合管钻具均具有强度低、刚性差、易变形、易报废等缺点,使用中需要经常维修、调直、打磨。购买材质及加工工艺好的国外半合管取心钻具,也是一种解决办法。

## 参考文献:

- [1] 张祖培. 硬岩深孔的取心与方法[A]. 中国大陆科学钻探工程 技术论文选集[C]. 北京: 地质出版社, 2007. 156-159.
- [2] 张伟,贾军. 汶川地震科学钻探二号孔取心钻进方法的选择 [J]. 探矿工程(岩土钻掘工程),2009,36(7):5-7.