4/6/2025, 5:53:21 PM 星期日
近井口高压管汇布置结构设计及选材优化研究
CSTR:
作者:
作者单位:

湖北省地质局第七地质大队,湖北 宜昌 443100

中图分类号:

P634;TE92


Structural design and material selection optimization for high pressure manifolds near the wellhead
Author:
Affiliation:

The Seventh Geological Brigade of Hubei Geological Bureau, Yichang Hubei 443100, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了研究和改善油气资源钻井工程中高压管汇系统受到流固体冲蚀的影响,本文根据近井口常规管汇布置情况,建立了0°、45°、90°三种角度弯管模型,并根据计算流体力学基本理论,结合实际工况,对压裂弯管内部流场进行数值模拟,最后设计了0°与45°压裂安装角度管汇布置结构,并根据此3种弯管安装角度及弯管材料选用,进行了室内冲蚀试验研究,得出了如下结论:(1)在不同的安装角度下,随着冲次增大,流体出口速度越大,在任何安装角度下,弯管部位会发生较大的速度波动,因此速度波动太大弯管部位会受到严重冲蚀;(2)高速流体冲蚀区域主要分布在近井口压裂头部位的管道入口位置,在两种错位情况下,管汇整体流体速度由出口到入口逐渐变小;(3)压裂头部位5个出口部位存在较大的冲蚀速度,速度和压力呈现阶梯状的变化,中间有压力和速度稳定时期,速度大的位置压力小。当安装角度为0°和45°时,流体的冲击速度会较小;(4)42CrMo防冲蚀能力较强,管道材料选用42CrMo有助于延长管道使用寿命。

    Abstract:

    In order to study and improve the impact of fluid/solid erosion on the high-pressure manifold system in oil and gas drilling, according to the conventional manifold layout near the wellhead, this paper establishes the models for three angle elbows of 0°, 45° and 90°, and carries out numerical simulation of the internal flow field of the fracturing elbow according to the basic theory of computational fluid mechanics and with regard to the actual working conditions. Finally, the manifold layout structures for 0° and 45° fracturing installation angles are designed. According to the installation angles of the three elbows and the selection of the three elbow materials, the indoor erosion test was carried out, and the following conclusions were obtained: (1)At different installation angles, the greater the velocity of the fluid outlet with the increase of the number of strokes, the greater the velocity fluctuation of the bend position at any installation angle; if the velocity fluctuation is too large, the bend position will be seriously eroded; (2)The high-speed fluid erosion area is mainly distributed at the inlet of the pipeline near the wellhead fracturing head. In the case of two dislocations, the overall fluid velocity of the manifold gradually decreases from the outlet to the inlet; (3)The erosion area is mainly distributed near the inlet of the pipeline near the fracturing head. There are high erosion velocities at the five outlets of the fracturing head, and the velocity and pressure show a stepwise changewith a stable period in the middle and small pressure at the position with high velocity. At the installation angle of 0° and 45°, the impact velocity of the fluid will be small; (4)42CrMo has strong erosion resistance, and the selection of 42CrMo as the pipeline material will help to prolong the service life of the pipeline.

    参考文献
    [1] 孙凯,刘化伟,明鑫,等.自201井区页岩气井水平段安全高效钻井技术[J].钻探工程,2022,49(2):104-109.SUN Kai, LIU Huawei, MING Xin, et al. Safe and high-efficiency drilling technology for horizontal sections of shale gas wells in Well Block Zi-201[J]. Drilling Engineering, 2022,49(2):104-109.
    [2] 张金成.第一性原理思维法在页岩气革命中的实践与启示[J].钻探工程,2022,49(2):1-8.ZHANG Jincheng. First principle thinking promotes innovation of shale gas revolution[J]. Drilling Engineering, 2022,49(2):1-8.
    [3] Clarkson C.R., Qanbari F., Williams-Kovacs J.D., et al. Semi-analytical model for matching flow back and early-time production of multi-fractured horizontal tight oil wells[J]. Journal of Unconventional Oil and Gas Resources, 2016(15):134-145.
    [4] 孙秉才,樊建春,温东,等.高压对高压管汇冲蚀磨损的影响[J].润滑与密封,2014,39(2):11-14.SUN Bingcai, FAN Jianchun, WEN Dong, et al. Effect of high pressure on erosion wear of high pressure pipe manifold[J]. Lubrication Engineering, 2014,39(2):11-14.
    [5] 李建亭,曾云,李宁.高压管汇冲蚀速率数值模拟新方法研究[J].石油机械,2021,49(7):138-146.LI Jianting, ZENG Yun, LI Ning. Research on new numerical simulation method of erosion rate of high pressure manifold[J]. China Petroleum Machinery, 2021,49(7):138-146.
    [6] 宋晓琴,黄诗嵬,朱珊珊.90°弯管气固两相流磨损研究[J].钻采工艺,2015,38(6):56-59.SONG Xiaoqin, HUANG Shiwei, ZHU Shanshan. Study on gas-solid two phase flow in 90 degree bend[J]. Drilling & Production Technology, 2015,38(6):56-59.
    [7] 范志刚,李翠楠,王燕,等.流速对天然气输气管道腐蚀的影响规律研究[J].钻采工艺,2010,33(2):88-90.FAN Zhigang, LI Cuinan, WANG Yan, et al. Influence of flow rate on gas pipeline corrosion[J]. Drilling & Production Technology, 2010,33(2):88-90.
    [8] Wang Wenhui, Lu Xiaolu, CUI Yi, et al. Modified pressure loss model for T-junctions of engine exhaust manifold[J]. Chinese Journal of Mechanical Engineering, 2014,276,1232-1238.
    [9] 孙汝奇,岳爱丽,刘忠砚,等.高压作业下管汇的空间流固耦合分析[J].石油机械,2012,40(4):100-103.SUN Ruqi, YUE Aili, LIU Zhongyan, et al. Spatial fluid-solid interaction analysis of manifold in high pressure operation[J]. China Petroleum Machinery, 2012,40(4):100-103.
    [10] 邱亚玲,邹凤彬,祝效华,等.页岩气压裂双弯头弯管冲蚀规律研究[J].润滑与密封,2016,41(9):97-101.QIU Yaling, ZOU Fengbin, ZHU Xiaohua, et al. Study on erosion wear of shale gas fracture on double elbows bend[J]. Lubrication Engineering, 2016,41(9):97-101.
    [11] Wang Qianlin, Zhang Laibin, Hu Jinqiu, et al. A dynamic and non-linear risk evaluation methodology for high pressure manifold in shale gas fracturing[J]. Journal of Natural Gas Science and Engineering, 2016(29):7-14.
    [12] 祝效华,曾云义,陈波,等.考虑流固耦合的双弯头压裂管汇的振动特性[J].天然气工业,2018,38(1):95-101.ZHU Xiaohua, ZENG Yunyi, CHEN Bo, et al. Vibration characteristics of double-elbow fracturing manifold considering flid-solid interaction[J]. Natural Gas Industry, 2018,38(1):95-101.
    [13] 姜磊,李美求,华剑,等.压裂泵高压排出管汇的振动特性分析及测试[J].科学技术与工程,2019,19(22): 143-148.JIANG Lei, LI Meiqiu, HUA Jian, et al. Analysis and test of vibration characteristics of high-pressure discharge manifold of fracturing pump[J]. Science Technology and Engineering, 2019,19(22):143-148.
    [14] Zhang Jixin, Jian Kang, Fan Jianchun, et al. Study on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industry[J]. Journal of Natural Gas Science and Engineering, 2016,32:334-346.
    [15] Sun Bingcai, Fan JianChun, Dong Wen, et al. An experimental study of slurry erosion involving tensile stress for pressure pipe manifold[J]. Tribology International, 2015,82:280-286.
    [16] Zardin Barbara, Cillo Giovanni, Carlo Alberto Rinaldini, et al. Pressure losses in hydraulic[J]. Energies, 2017,10:1-21.
    [17] Mansouri A., Arabnejad H., S.A.Shirazi, et al. A combined CFD/experimental methodology for erosion prediction[J]. Wear, 2015(332-333):1090-1097.
    [18] Jing Jiaqiang, Duan Nian, Dai Kemin, et al. Investigation on drag characteristics of heavy oil flowing through horizontal pipe under the action of aqueous foam[J]. Journal of Petroleum Science and Engineering, 2014,124:83-93.
    [19] 张鸣远,景思睿,李国君.高等工程流体力学[M].西安:西安交通大学出版社,2006.ZHANG Mingyuan, JING Sirui, LI Guojun. Advanced Engineering Fluid Dynamics[M]. Xi’an: Xi’an Jiaotong University Press, 2006.
    [20] 胡坤,李振北.ANSYS ICEM CFD工程实例详解[M].北京:人民邮电出版社,2014.HU Kun, LI Zhenbei. Detailed Explanation of ANSYS ICEM CFD Engineering Example[M]. Beijing: Posts & Telecom Press, 2014.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谭建国,洪毅,张所邦,等.近井口高压管汇布置结构设计及选材优化研究[J].钻探工程,2022,49(5):163-170.
TAN Jianguo, HONG Yi, ZHANG Suobang, et al. Structural design and material selection optimization for high pressure manifolds near the wellhead[J]. Drilling Engineering, 2022,49(5):163-170.

复制
分享
文章指标
  • 点击次数:595
  • 下载次数: 768
  • HTML阅读次数: 1386
  • 引用次数: 0
历史
  • 收稿日期:2022-08-15
  • 最后修改日期:2022-09-04
  • 录用日期:2022-09-06
  • 在线发布日期: 2022-09-29
  • 出版日期: 2022-09-10
文章二维码