4/3/2025, 4:06:50 PM 星期四
花岗岩型干热岩储层信息获取方法及控震压裂技术介绍
CSTR:
作者:
作者单位:

1.中国矿业大学孙越崎学院,江苏省徐州市,221116;2.中国矿业大学资源与地球科学学院,江苏省徐州市,221116;3.中国矿业大学安全科学与工程学院,江苏省徐州市,221116;4.中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京,100083;5.中国地质大学(武汉),湖北武汉,430074

中图分类号:

P314

基金项目:

国家自然科学基金青年基金“结构面影响下干热岩水力裂缝扩展行为特征及能量释放机制研究”(编号:42102353)、“纳米颗粒钻井液离散元流固耦合模拟与页岩孔隙封堵机理研究”(编号:42002311);中国博士后科学基金面上项目“低渗油藏CO2地质封存THM耦合模拟与砂岩破裂机制研究”(编号:2021M703512)


Introduction of information acquisition method and controlled seismic fracturing technology for granite-type hot dry rock reservoir
Author:
Affiliation:

1.Sun Yueqi College, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China;2.School of Resources and Earth Sciences, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China;3.School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China;4.State Key Laboratory of Coal Resources and Safe Mining, China University of Mining;and Technology, Beijing 100083, China;5.Faculty of Engineering, China University of Geosciences, Wuhan Hubei 430074, China.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    干热岩型地热作为一种大储量的清洁能源,在日趋严峻的环保形势下,正在逐渐影响着世界能源格局,并成为学术界、政府和企业关注的焦点。开发花岗岩型干热岩需要建立增强型地热系统(EGS),其核心是向储层钻井并压裂形成一定规模的裂缝网络,构建注入井和生产井的循环回路来提取热能发电。从瑞士Basel EGS工程、韩国Pohang EGS工程等花岗岩型干热岩EGS压裂工程案例可以发现,诱发地震已成为制约花岗岩型干热岩开发的关键因素,其原因在于未明确大尺寸高倾角结构面的具体位置,无法预测压裂液在压裂过程中的流动方向,导致压裂液进入此类结构面造成结构面滑移从而诱发地震。本文将针对此问题通过查明干热岩所在储层的信息对开发花岗岩型干热岩控震压裂人工热储建造方法进行介绍。

    Abstract:

    As a kind of clean energy with large reserves, hot dry rock geothermal is gradually affecting the world energy pattern under the increasingly severe environmental protection situation, and has become the focus of academia, government and enterprises. The development of granite-type hot dry rock requires the establishment of Enhanced Geothermal Systems (EGS) and the core of EGS is to drill into and fracture the reservoir to form a certain scale of fracture network, and construct a circulation circuit of injection wells and production wells to extract thermal energy for power generation. From the EGS fracturing engineering cases of granite-type hot dry rock such as Basel EGS project in Switzerland and Pohang EGS project in South Korea, it can be found that the induced earthquake has become a key factor restricting the development of granite-type hot dry rock because the specific location of large-size and high-inclination structural plane is not clear, and the flow direction of fracturing fluid in the fracturing process cannot be predicted, which leads to the slip of structural plane caused by fracturing fluid entering such structural plane and inducing earthquake. This article will focus on this problem by identifying the information of the reservoir where the hot dry rock is located and furthermore introduce the construction method of seismic control and fracturing to build artificial heat reservoir for the development of granite-type hot dry rock .

    参考文献
    [1] 李德威,王焰新.干热岩地热能研究与开发的若干重大问题[J].地球科学(中国地质大学学报),2015,40(11):1858-1869。
    [2] 宫天琦.基于岩石物理的皖北干热岩地震响应特征研究[D].中国矿业大学,2021.
    [3] 许天福,张延军,于子望,等.干热岩水力压裂实验室模拟研究[J].科技导报,2015,33(19):35-39。
    [4] 谢紫霄,黄中伟,熊建华,等.天然裂缝对干热岩水力压裂裂缝扩展的影响规律[J].天然气工业,2022,42(4):63-72.
    [5] 许天福,张延军,曾昭发,等.增强型地热系统(干热岩)开发技术进展[J].科技导报,2012,30(32):42-45.
    [6] Tester J W, Anderson B J, Batchelor A S, et al. The future of geothermal energy-impact of enhanced geothermal system (EGS) on the United States in the 21 century[M]. Cambridge MA: MITMassachusetts Institute of Technology, 2006.
    [7] 周舟,金衍,卢运虎,等.干热岩地热储层钻井和水力压裂工程技术难题和攻关建议[J].中国科学:物理学力学天文学,2018,48(12):97-102.
    [8] 甘浩男,王贵玲,蔺文静,等.增强型地热系统环境地质影响现状研究与对策建议[J].地质力学学报,2020,26(2):211-220.
    [9] 尹欣欣,蒋长胜,翟鸿宇,等.全球干热岩资源开发诱发地震活动和灾害风险管控[J].地球物理学报,2021,64(11):3817-3836.
    [10] Troiano A, Di Giuseppe M G, Monetti A,et al. Fluid injection in Enhanced Geothermal Systems:A study on the detectability of self-potential effects and on their correlation with induced seismicity[J]. Geothermics, 2017,65:280-294.
    [11] Mukuhira Y, Dinske C, Asanuma H, et al. Pore pressure behavior at the shut-in phase and causality of large induced seismicity at Basel,Switzerland[J]. Journal of Geophysical Research:Solid Earth, 2017,122(1):411-435.
    [12] Barth A, Wenzel F, Langenbruch C. Probability of earth quake occurrence and magnitude estimation inthe post shut-in phase of geothermal projects[J]. Journal of Seismology, 2013,17(1):5-11.
    [13] Shapiro S A, Dinske C, Langenbruch C, et al. Seismogenic index and magnitude probability of earthquakes induced duringreservoir fluid stimulations[J]. The Leading Edge, 2010,29(3):304-309.
    [14] Shapiro S A, Krüger O S, Dinske C, et al. Magnitudes of induced earthquakes and geometric scales of fluid-stimulated rock volumes[J]. Geophysics, 2011,76(6):55-63.
    [15] McGarr A. Maximum magnitude earthquakes induced by fluid injection[J]. Journal of Geophysical Research:Solid Earth, 2014,119(2):1008-1019.
    [16] Van Der Elst N J, Page M T, Weiser D A, et al. Induced earthquake magnitudes are as large as(statistically) expected[J]. Journal of Geophysical Research:SolidEarth, 2016,121(6):4575-4590.
    [17] Galis M, Ampuero J P, Mai P M, et al. Induced seismicity provides insight into why earthquake ruptures stop[J]. Science Advances, 2017,3(12):7528.
    [18] Bethmann F, Deichmann N, Mai P M. Seismic wave attenuation from borehole and surface records in the top 2.5km beneath the city of Basel, Switzerland[J]. Geophysical Journal International, 2012,190(2):1257-1270.
    [19] Bachmann C E, Wiemer S, Woessner J, et al. Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for Enhanced Geothermal Systems[J]. Geophysical Journal International, 2011,186(2):793-807.
    [20] Kim H, XieL M, Min K B, et al. Integrated in situ stress estimation by hydraulic fracturing, borehole observations and numerical analysis at the EXP-1 borehole in Pohang, Korea[J]. Rock Mechanics and Rock Engineering, 2017,50:3141-3155.
    [21] Grigoli F, Cesca S, Rinaldi A P, et al. The November 2017 Mw5.5 Pohang earthquake:A possible case of induced seismicity in South Korea[J]. Science, 2018,360:1003-1006.
    [22] Kim K H, Ree J H, Kim Y H, et al. Assessing whether the 2017 Mw5.4 Pohang earthquake in South Korea was an inducedevent[J]. Science, 2018,360:1007-1009.
    [23] Sanuma H, Kenmoku Y, Niitsuma H, et al. Interpretation of reservoir creation process at Cooper Basin by microseismic multiplet analysis[J]. GRC Transactions, 2009,33:149-153.
    [24] Benato S,Hickman S,Davatzes N C, et al. Conceptual model and numerical analysis of the Desert Peak EGS project:Reservoir response to the shallow medium flow rate hydraulic stimulation phase[J]. Geothermics, 2016,63:139-156
    [25] Brown D W. Hot dry rock geothermal energy: important lessons from Fenton hill[C]. Proceedings of the Thirty-Fourth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2009.
    [26] Grard A, Genter A, Kohl T, et al. The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forêts (Alsace,France)[J]. Geothermics, 2006,35(5-6):473-483
    [27] Zimmermann G, Reinicke A. Hydraulic stimulation of a deep sandstone reservoir to develop an Enhanced Geothermal System:Laboratory and field experiments[J]. Geothermics, 2010,39(1):70-77.
    [28] Edwards B, Kraft T, Cauzzi C, et al. Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel,Switzerland[J]. Geophysical Journal International, 2015,201(2):1022-1039
    [29] 任义,高永涛,吴顺川,等.基于矩张量反演的传感器校准方法应用和对比[J].岩土力学,2022,43(6):1738-1748.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈秋,刘一凡,金雪,等.花岗岩型干热岩储层信息获取方法及控震压裂技术介绍[J].钻探工程,2023,50(S1):50-55.
CHEN Qiu, LIU Yifan, JIN Xue, et al. Introduction of information acquisition method and controlled seismic fracturing technology for granite-type hot dry rock reservoir[J]. Drilling Engineering, 2023,50(S1):50-55.

复制
分享
文章指标
  • 点击次数:366
  • 下载次数: 466
  • HTML阅读次数: 102
  • 引用次数: 0
历史
  • 收稿日期:2023-05-03
  • 最后修改日期:2023-07-23
  • 录用日期:2023-08-08
  • 在线发布日期: 2023-10-21
文章二维码