4/6/2025, 5:53:18 PM 星期日
深井温湿环境下泥页岩力学特性及微观孔隙结构演化机制
CSTR:
作者单位:

中国地质大学(北京)工程技术学院,北京 100083

中图分类号:

P634

基金项目:

国家自然科学基金资助面上项目“真空无水低功耗条件下碎岩机理研究”(编号:41672365);科学技术部国际科技合作专项项目“井下闭环高精度导向钻进技术”(编号:2006DFB21300)


Mechanical properties and microscopic pore structure evolution mechanism of shale under deep well temperature and humidity environment
Affiliation:

School of Engineering and Technology of China University of Geosciences-Beijing, Beijing 100083, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    微观孔隙结构对页岩油气藏的勘探利用具有重要意义。以松科二井深层泥页岩试样作为研究对象,进行了热、液作用下的泥页岩力学特性和孔隙变化研究。采用场发射扫描电镜(SEM)、高压压汞、CT扫描等实验方法,对饱和和加热处理的泥页岩进行了微观孔隙特征对比研究。结果表明:该泥页岩试样主要孔隙类型包括微裂隙、粒间孔、粒内孔等,其中发育较多的微纳米缝,主要尺寸区间为20~400 nm;饱和湿度、高温加热均会降低泥页岩的孔容、孔隙率以及渗透率,且温度越高影响越明显,饱和试样纳米级孔隙收缩减小,1~35 μm占比增多,大于35 μm孔隙占比减少,内部宏观裂缝被吸水膨胀矿物填充;加热试样纳米级孔隙向两侧开裂,40~100 nm孔隙转化为数百纳米甚至微米级孔隙,1~50 μm孔隙占比增加,内部宽大裂缝被填充形成细小圆孔裂缝。同时借助计算机软件对CT扫描所获取的泥页岩样品进行三维孔隙模型的重建,以提供更加清晰、逼真的立体化展示和对泥页岩表面及内部微观孔隙进行定量研究。

    Abstract:

    Microscopic pore structure is of great significance to the exploration and utilization of shale oil and gas reservoirs. Taking the deep shale samples of Songke No.2 well as the research object, the mechanical properties and pore changes of shale under the action of heat and liquid were studied. The microscopic pore characteristics of saturated and heated shale were compared by means of field emission scanning electron microscopy (SEM), high pressure mercury injection and CT scanning. The results show that the main pore types of the shale samples include micro-cracks, intergranular pores, intragranular pores, etc., among which more micro-nano cracks are produced, and the main size range is 20nm-400nm. The saturated humidity and high temperature heating will reduce the pore volume, porosity and permeability of shale, and the higher the temperature, the more obvious the effect. The nano-scale pore shrinkage of saturated samples decreases, the proportion of 1μm-35μm increases, the proportion of pores larger than 35μm decreases, and the internal macro-fractures are filled with water-absorbing expansive minerals. The nano-scale pores of the heated sample crack to both sides, and the 40nm-100nm pores are converted into hundreds of nanometers or even micron-scale pores. The proportion of 1μm-50μm pores increases, and the internal wide cracks are filled to form small round-hole cracks. At the same time, the three-dimensional pore model of the shale samples obtained by CT scanning is reconstructed by computer software to provide a clearer and more realistic three-dimensional display and quantitative study on the surface and internal micro-pores of shale was carried out.

    参考文献
    [1] Schmoker J W. Resource-assessment perspectives for unconventional gas systems[J]. AAPG bulletin, 2002,86(11):1993-1999.
    [2] 陈更生,董大忠,王世谦,等.页岩气藏形成机理与富集规律初探[J].天然气工业,2009,29(5):17-21.
    [3] 邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.
    [4] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG bulletin, 2012,96(6):1071-1098.
    [5] 李红梅,赵毅,马振锋,等.页岩气储层钻井液损害评价研究[J].探矿工程(岩土钻掘工程),2016,43(7):107-110.
    [6] Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009,48(8):16-21.
    [7] Wang Xinzhou, Song Yitao, Wang Xuejun. Simulation of Petroleum Genesis and Expulsion Physical-methods,Mechanism and Application[M]. Dongying: China University of Petroleum Press, 1996
    [8] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of sedimentary research, 2009,79(12):848-861.
    [9] Milner M., McLin R., Petriello J.. Imaging Texture and Porosity in Mudstones and Shales: Comparison of Secondary and Ion Milled Backscatter SEM Methods[M], 2010
    [10] 杨阳.低温作用下岩石动态力学性能试验研究[D].北京:中国矿业大学(北京),2016.
    [11] Saad A, Guédon S, Martineau F. Microstructural weathering of sedimentary rocks by freeze-thaw cycles: experimental study of state and transfer parameters[J]. Comptes Rendus Geoscience, 2010,342(3):197-203.
    [12] 李波波,李建华,杨康,等.考虑含水率影响的煤岩变形及渗透率模型[J].煤炭学报,2019,44(4):1076-1083.
    [13] 李瑞.基于细观力学的岩石热膨胀特性研究[D].北京:中国地质大学(北京),2016.
    [14] Slatt R M, O''''Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG bulletin, 2011,95(12):2017-2030.
    [15] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG bulletin, 2012,96(6):1071-1098.
    [16] 张海杰,蒋裕强,周克明,等.页岩气储层孔隙连通性及其对页岩气开发的启示——以四川盆地南部下志留统龙马溪组为例[J].天然气工业,2019,39(12):22-31.
    [17] Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103:26-31
    [18] 吴忠锐,何生,何希鹏,等.湘中涟源凹陷上二叠统龙潭组和大隆组海陆过渡相泥页岩孔隙结构特征及对比[J].地球科学,2019,44(11):3757-3772.
    [19] Ko L T, Ruppel S C, Loucks R G, et al. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: Insights from laboratory thermal maturation and organic petrology[J]. International Journal of Coal Geology, 2018,190:3-28.
    [20] 彭女佳,何生,郝芳,等.川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性[J].地球科学,2017,42(7):1134-1146.
    [21] 芮昀,王长江,张凤生,等.昭通国家级页岩气示范区页岩气储层微观孔喉表征[J].天然气工业,2021,41(S1):78-85.
    [22] 张烈辉,唐洪明,陈果,等.川南下志留统龙马溪组页岩吸附特征及控制因素[J].天然气工业,2014,34(12):63-69.
    [23] 吴松涛,朱如凯,崔京钢,等.鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J].石油勘探与开发,2015(2):167-176.
    [24] 巨明皓,赖富强,龚大建,等.泥页岩储层脆性评价实验研究——以贵州岑巩地区下寒武统牛蹄塘组泥页岩为例[J].四川地质学报,2019(2):238-243.
    [25] 郝乐伟,王琪,唐俊.储层岩石微观孔隙结构研究方法与理论综述[J].岩性油气藏,2013,25(5):123-128.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙路,凌雪.深井温湿环境下泥页岩力学特性及微观孔隙结构演化机制[J].钻探工程,2023,50(S1):126-134.
sunlu, lingxue. Mechanical properties and microscopic pore structure evolution mechanism of shale under deep well temperature and humidity environment[J]. Drilling Engineering, 2023,50(S1):126-134.

复制
分享
文章指标
  • 点击次数:262
  • 下载次数: 493
  • HTML阅读次数: 103
  • 引用次数: 0
历史
  • 收稿日期:2023-05-31
  • 最后修改日期:2023-08-13
  • 录用日期:2023-08-14
  • 在线发布日期: 2023-10-21
文章二维码