4/6/2025, 6:51:02 PM 星期日
水射流破碎南海含水合物沉积物数值模拟研究
CSTR:
作者单位:

吉林大学建设工程学院,吉林大学建设工程学院,吉林大学建设工程学院,吉林大学建设工程学院,吉林大学建设工程学院,吉林大学建设工程学院,吉林大学建设工程学院,吉林大学建设工程学院

中图分类号:

P634.5

基金项目:

国家自然科学基金面上项目“高压低温水射流作用下海底天然气水合物储层破岩过程与机理研究”(编号:41672361);吉林省科技发展计划项目,国际科技合作项目“海洋天然气水合物置换开采关键技术研究”(编号:20170414044GH);省校共建项目,新能源专项“油页岩原位转化工程共性关键技术研究”(编号:SXGJSF2017-5)


Physical Simulation Experiment System for Jet Erosion of Natural Gas Hydrate
Author:
Affiliation:

College of Construction Engineering, College of Jilin University,College of Construction Engineering, College of Jilin University,College of Construction Engineering, College of Jilin University,College of Construction Engineering, College of Jilin University,College of Construction Engineering, College of Jilin University,College of Construction Engineering, College of Jilin University,College of Construction Engineering, College of Jilin University,College of Construction Engineering, College of Jilin University

Fund Project:

The research on rock fragmentation process and mechanism of marine gas hydrate bearing sediment under the action of high pressure and low temperature water jet

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究高压水射流切割、破碎南海天然气水合物储层的过程,采用著名的LS—DYNA显示动力分析有限元程序,对淹没状态下,水射流破碎海底含水合物沉积物过程进行数值模拟研究,研究了不同射流速度对高压水射流作用下含水合物沉积物破碎效果的影响规律。随着射流速度的增大,冲蚀深度逐渐增大,两者呈线性递增关系。含水合物沉积物冲蚀体积是轴向冲蚀与径向冲蚀共同作用的结果,射流速度越大,对含水合物沉积物的轴向与径向冲蚀作用增强,加大了含水合物沉积物冲蚀体积递增速率。

    Abstract:

    In order to explore the process and mechanism of high pressure water jet cutting and breaking natural gas hydrate reservoir of the South China Sea, LS—DYNA3D code had been used to simulate the process of water jet breakup of hydrates in submerged state. The effect of different jet velocities on the crushing effect of hydrate bearing sediments under high pressure water jet was studied. The erosion depth increases linearly with the jet velocity. The erosion volume of hydrates sediment is the result of axial erosion and radial erosion. The greater the jet velocity is, the axial and radial erosion of hydrate deposits are enhanced, and the increasing rate of the erosion volume of the hydrate deposits is increased.

    参考文献
    [1]杨林, 赵大军, 郭威,等. 天然气水合物泥浆制冷系统的野外试验研究[J]. 探矿工程(岩土钻掘工程), 2013(12):25-27.
    [2]郭平. 油气藏流体相态理论与应用[M]. 石油工业出版社, 2004.
    [3]Chen C, Yang L, Jia R, et al. Simulation Study on the Effect of Fracturing Technology on the Production Efficiency of Natural Gas Hydrate[J]. Energies, 2017, 10(8):1241.
    [4]Yang L, Chen C, Jia R, et al. Influence of Reservoir Stimulation on Marine Gas Hydrate Conversion Efficiency in Different Accumulation Conditions[J]. Energies, 2018, 11(2):339.
    [5]Pooladi-Darvish M. Gas Production From Hydrate Reservoirs and Its Modeling[J]. Journal of Petroleum Technology, 2004, 56(6):65-71.
    [6]Moon C, Taylor P C, Rodger P M. Clathrate nucleation and inhibition from a molecular perspective[J]. Revue Canadienne De Physique, 2003, 81:451-457.
    [7]刘昌岭, 业渝光, 孟庆国等. 南海神狐海域天然气水合物样品的基本特征[J]. 热带海洋学报, 2012(5):1-5.
    [8]张光学, 梁金强, 陆敬安等. 南海东北部陆坡天然气水合物藏特征[J]. 天然气工业, 2014, 34(11):1-10.
    [9]魏伟, 张金华, 于荣泽,等. 2017年天然气水合物研发热点回眸[J]. 科技导报, 2018, 36(1):83-90.
    [10]杨林, 孙友宏, 陈晨,等. 注蒸汽法开采天然气水合物的数值模拟及试验研究[C]// 全国探矿工程. 2015.
    [11]高文爽, 陈晨, 房治强. 高压热射流开采天然气水合物的数值模拟研究[J]. 天然气勘探与开发, 2010, 33(4):49-52.
    [12]Proceedings of the 9th American Waterjet Technology Conference, Dearbom, USA, 1997.
    [13]徐依吉.超高压水射流理论及应用基础研究[D].成都:西南石油大学,2004.
    [14]Huff,C.F., McFall,A.L..Investigation into the Effects of an discharge on a High Velocity Liquid Jet. Sandia Laboratory Report SAND 77-1135c,1997.
    [15]高文爽. 油页岩钻孔水力开采实验台设计及孔底流场数值模拟研究[D]. 吉林大学, 2011.
    [16]温继伟. 油页岩钻孔水力开采用射流装置的数值模拟与实验研究[D]. 吉林大学, 2014.
    [17]周守为, 陈伟, 李清平,等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4):1-8.
    [18]Liu S, Liu Z, Cui X, et al. Rock breaking of conical cutter with assistance of front and rear water jet[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2014, 42(5):78-86.
    [19]朱百里. 计算土力学[M]. 上海科学技术出版社, 1990.
    [20]蒋国盛, 王达, 叶建良. 天然气水合物的勘探与开发[M]. 中国地质大学出版社, 2002.
    [21]Clayton C R I, Priest J A, Best A I. The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand[J]. Géotechnique, 2005, 55(6):423-434.
    [22]宁伏龙, 吴能友, 李实,等. 基于常规测井方法估算原位水合物储集层力学参数[J]. 石油勘探与开发, 2013, 40(4):507-512.
    [23]Luo T, Song Y, Zhu Y, et al. Triaxial experiments on the mechanical properties of hydrate-bearing marine sediments of South China Sea[J]. Marine & Petroleum Geology, 2016, 77:507-514.
    [24]Lu Y, Huang F, Liu X, et al. On the failure pattern of sandstone impacted by high-velocity water jet[J]. International Journal of Impact Engineering, 2015, 76:67-74.
    [25]Momber A W. Wear of rocks by water flow[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(1):51-68.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘栋彬,陈晨,杨林,等.水射流破碎南海含水合物沉积物数值模拟研究[J].钻探工程,2018,45(10):27-31.
PAN Dong-bin, CHEN Chen, YANG Lin, et al. Physical Simulation Experiment System for Jet Erosion of Natural Gas Hydrate[J]. Drilling Engineering, 2018,45(10):27-31.

复制
分享
文章指标
  • 点击次数:925
  • 下载次数: 977
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2018-07-11
  • 最后修改日期:2018-07-11
  • 录用日期:2018-08-25
  • 在线发布日期: 2018-10-17
文章二维码