4/9/2025, 12:16:58 PM 星期三
万米井用超高强高韧套管的研制及组织表征
CSTR:
作者:
作者单位:

1.宝山钢铁股份有限公司中央研究院,上海 201900;2.上海交通大学材料科学与工程学院,上海 200240;3.油气钻采输送装备全国重点实验室,上海 201900

中图分类号:

TE921;P634.4

基金项目:

国家重点研发计划“深地油气资源勘探用高强韧钢管材及应用技术研究”(编号:2023YFB3711700,2023YFB3711702)


Development and structure characterization of ultra-high strength and toughness casing for myriametric well
Author:
Affiliation:

1.Baosteel Research Institute, Baoshan Iron and Steel Co., Ltd., Shanghai 201900, China;2.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;3.State Key Laboratory of Oil and Gas Equipment, Shanghai 201900, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    根据万米特深井超高温超高压工况需求,开展超高强高韧套管合金化技术和制造工艺研究,开发出具有良好韧性、高温强度、抗挤毁和抗延迟断裂性能的BG155V超高强高韧套管,批量试制的性能检测结果表明屈服强度达到1100 MPa以上,0 ℃横向夏比冲击功平均值达到名义屈服强度的10%。对套管不同服役温度下强度、低温韧性以及微观组织进行了分析,发现采用热轧后控制冷却工艺的管体晶粒度达到11级,通过细小的晶粒保证材料良好韧性和抗延迟断裂性能,提升了万米特深井油气资源开发用套管安全服役的可靠性。

    Abstract:

    According to the construction requirements of myriametric extra-deep well, the BG155V casing with good toughness, high-temperature strength, collapse resistance and delayed fracture resistance is developed on the basis of alloying technology and manufacture process optimization. The test results of batch production showed that the yield strength reaches over 1100 MPa, and the transverse Charpy impact energy at 0 ℃ reached 10% of the nominal yield strength, and the strength and low temperature toughness and microstructure of casing under different service temperatures were analyzed. It was found that the grain size level of the casing with controlled cooling process after hot rolling reaches up to 11. The fine grains ensure good toughness and delayed fracture resistance of the material, which improves the reliability of the casing in the myriametric extra-deep wells for the development of oil and gas resource.

    参考文献
    [1] 韩烈祥.川渝地区超深井钻完井技术新进展[J].石油钻采工艺,2019,41(5):555-561.HAN Liexiang. New progress of drilling and completion technologies for ultra-deep wells in the Sichuan-Chongqing area[J]. Oil Drilling & Production Technology, 2019,41(5):555-561.
    [2] 邹灵战,毛蕴才,刘文忠,等.盐下复杂压力系统超深井的非常规井身结构设计——以四川盆地五探1井为例[J].天然气工业,2018,38(7):73-79.ZOU Lingzhan, MAO Yuncai, LIU Wenzhong, et al. Unconventional casing programs for subsalt ultra-deep wells with a complex pressure system: A case study on Well Wutan 1 in the Sichuan Basin[J]. Natural Gas Industry, 2018,38(7):73-79.
    [3] 刘洪涛,刘举,刘会锋,等.塔里木盆地超深层油气藏试油与储层改造技术进展及发展方向[J].天然气工业,2020,40(11):76-78.LIU Hongtao, LIU Ju, LIU Huifeng, et al. Progress and development direction of production test and reservoir stimulation technologies for ultra-deep oil and gas reservoirs in Tarim Basin[J]. Natural Gas Industry, 2020,40(11):76-78.
    [4] 雷群,胥云,杨战伟,等.超深油气储集层改造技术进展与发展方向[J].石油勘探与开发,2021,48(1):193-201.LEI Qun,XU Yun,YANG Zhanwei,et al. Progress and development directions of stimulation techniques for ultra-deep oil and gas reservoirs[J]. Petroleum Exploration and Development, 2021,48(1):193-201.
    [5] 尹浩,梁健,李宽,等.万米科学钻探关键机具优化措施研究[J].钻探工程,2023,50(4):16-24.YIN Hao, LIANG Jian, LI Kuan, et al. Research on optimization measures of key instrument for myriametric scientific drilling[J]. Drilling Engineering, 2023,50(4):16-24.
    [6] 孙金声,刘伟,王庆,等.万米超深层油气钻完井关键技术面临挑战与发展展望[J].钻采工艺,2024,47(2):1-9.SUN Jinsheng, LIU Wei, WANG Qing, et al. Challenges and development prospects of oil and gas drilling and completion in myriametric deep formation in China[J]. Drilling & Production Technology, 2024,47(2):1-9.
    [7] 严泽生,张传友,王青峰,等.超深井用高强高韧油井管材料及产品开发[J].中国冶金,2014,24(4):54.YAN Zesheng, ZHANG Chuanyou, WANG Qingfeng, et al.Development of high-strength and high-toughness oil well pipe materials and products for ultra-deep wells[J]. China Metallurgy, 2014,24(4):54.
    [8] 陈坤,曾理,黄英,等.155 ksi钢级高强韧性套管钢、套管及其制备方法:CN201510260763.4[P].2017.07.28.CHEN Kun, ZENG Li, HUANG Yin, et al. 155ksi steel grade high strength toughness casing steel, casing and preparation method thereof: CN201510260763.4[P]. 2017.07.28.
    [9] 黄发,周庆军.高强钢的氢致延迟断裂行为研究进展[J].宝钢技术,2015(3):11-16.HUANG Fa, ZHOU Qingjun. Progress and perspectives of hydrogen induced delayed fracture of high strength steels[J]. Baosteel Technology, 2015(3):11-16.
    [10] Yamasaki S, Kubota M. Evaluation method for delayed fracture susceptibility of steels and development of high tensile strength steels with high delayed fracture resistance[J]. Nippon Steel Technical Report, 1999(80):50-55.
    [11] 司宇,唐远寿,周新,等.高强度马氏体钢中微合金元素对氢致延迟开裂的研究进展[J].汽车工艺与材料,2022(6):16-26.SI Yu, TANG Yuanshou, ZHOU Xin, et al. Research progress of microalloy elements on hydrogen-induced delayed cracking in high strength martensitic steels[J]. Automobile Technology & Material, 2022(6):16-26.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高展,董晓明,张忠铧.万米井用超高强高韧套管的研制及组织表征[J].钻探工程,2024,51(4):1-6.
GAO Zhan, DONG Xiaoming, ZHANG Zhonghua. Development and structure characterization of ultra-high strength and toughness casing for myriametric well[J]. Drilling Engineering, 2024,51(4):1-6.

复制
分享
文章指标
  • 点击次数:164
  • 下载次数: 11398
  • HTML阅读次数: 56
  • 引用次数: 0
历史
  • 收稿日期:2024-05-22
  • 最后修改日期:2024-07-02
  • 录用日期:2024-07-02
  • 在线发布日期: 2024-08-02
  • 出版日期: 2024-07-10
文章二维码