4/6/2025, 9:41:55 AM 星期日
基于岩石表面位移场的超声波振动下花岗岩损伤特性试验研究
CSTR:
作者:
作者单位:

1.吉林大学建设工程学院,吉林 长春 130026;2.黄河勘测规划设计研究院有限公司,河南 郑州 450003

中图分类号:

P634.1

基金项目:

国家自然科学基金项目“超声波振动碎岩机理的研究”(编号:41572356)


Experimental study on damage characteristics of granite under ultrasonic vibration based on the displacement field of the rock surface
Author:
Affiliation:

1.School of Construction Engineering, Jilin University, Changchun Jilin 130026, China;2.Yellow River Survey, Planning and Design Institute Co., Ltd., Zhengzhou Henan 450003, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    超声波振动碎岩技术作为解决硬岩钻进难题的新方法,其技术可行性受到国内外学者的大量验证,但是对于超声波振动下硬岩破碎机理的认识还存在不足。超声波振动下岩石表面径向响应位移与内部损伤状态存在着必然的联系,本文通过监测岩石在超声波振动过程中表面不同深度处的径向响应位移,利用应力波传播理论从能量耗散角度分析了岩石表面不同深度监测点径向响应位移的时空演化与岩石内部损伤发展的关系,得出超声波振动下岩石损伤主要由振动头高频冲击岩石造成的Hertz锥形环状裂纹和超声波振动交变应力产生的疲劳拉伸裂纹造成的,Hertz锥形环状裂纹的扩展深度为10 mm,疲劳损伤裂纹主要在10~20 mm深度处产生,超声波振动下岩石发生局部宏观破碎前存在着明显的径向响应位移征兆,岩石表面径向响应位移可以作为超声波振动下的破坏判据。本文的研究对于丰富超声波振动下硬岩的破碎机理具有重要意义。

    Abstract:

    Ultrasonic vibration rock fragmentation technology is a new method to solve hard rock drilling problems. Its technical feasibility has been verified by a large number of scholars at home and abroad. However, there is still insufficient understanding of the hard rock fragmentation mechanism under ultrasonic vibration. There is an inevitable connection between the surface radial response displacement of rock and its internal damage state under ultrasonic vibration. In this paper, by monitoring the radial response displacement of rock surface at different depths during ultrasonic vibration, the relationship between the spatial-temporal evolution of surface radial response displacement of rock at different depths and the development of its internal damage is analyzed by using the theory of stress wave propagation. The results show that the damage of rock under ultrasonic vibration is mainly caused by Hertz cone-shaped circular crack caused by high-frequency impact of the vibrating head and fatigue damage caused by the alternating stress of ultrasonic vibration. The propagation depth of Hertz cone-shaped circular crack is 10mm, and the fatigue damage crack mainly occurs at the depth of 10 to 20mm. There is obvious indication of radial response before the local macro fracture of rock under ultrasonic vibration. The radial response displacement of rock surface can be used as the failure criterion under ultrasonic vibration. The research in this paper is of great significance for enriching the mechanism of hard rock breaking under ultrasonic vibration

    参考文献
    [1] USA T T I. Fundamental research on percussion drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations[R].2005.
    [2] Harkness P. Ultrasonic rock drilling devices using longitudinal-torsional compound vibration[Z]. 2009.
    [3] Cardoni A, Harkness P, Lucas M. Ultrasonic rock sampling using longitudinal-torsional vibrations[J]. Ultrasonics, 2010,50(4-5):447-452.
    [4] Wiercigroch M, Wojewoda J, Krivtsov A M. Dynamics of ultrasonic percussive drilling of hard rocks[J]. Journal of Sound and Vibration, 2005,280(3-5):739-757.
    [5] Fernando P, Zhang M, Pei Z. Rotary ultrasonic machining of rocks: An experimental investigation[J]. Advances in Mechanical Engineering, 2018,10(3):2072045405.
    [6] 孙梓航.超声波振动频率对花岗岩破碎规律影响的研究[D].长春:吉林大学,2017.SUN Zihang. Study on the influence of ultrasonic vibration frequency on granite fragmentation[D]. Changchun: Jilin University, 2017.
    [7] 尹崧宇.超声波振动下花岗岩裂纹变化特性的研究[D].长春:吉林大学,2017.YIN Songyu. Study on variation characteristics of granite cracks under ultrasonic vibration[D]. Changchun: Jilin University, 2017.
    [8] 张书磊. 超声波振动作用下花岗岩内部裂纹变化规律的理论与试验研究[D].长春:吉林大学, 2019.ZHANG Shulei. Theoretical and experimental research on the internal cracks of granite under ultrasonic vibration[D]. Changchun: Jilin University, 2019.
    [9] Zhou Y, Tang Q, Zhang S, et al. The mechanical properties of granite under ultrasonic vibration[J]. Advances in Civil Engineering, 2019:1-11.
    [10] Zhao D, Zhang S, Zhao Y, et al. Experimental study on damage characteristics of granite under ultrasonic vibration load based on infrared thermography[J]. Environmental Earth Sciences, 2019,78(14).
    [11] 秦涛,张俊文,刘刚,等.岩石加载过程中表面变形场的演化机制[J].黑龙江科技大学学报, 2017,27(1):39-45.QIN Tao, ZHANG Junwen, LIU Gang, et al. Study on evolution mechanism behind deformation fields in process of uniaxial loading[J]. Journal of Heilongjiang University of Science and Technology, 2017,27(1):39-45.
    [12] 杨小彬,韩心星,刘恩来,等.单轴循环加卸载岩石非均匀变形演化特征[J].煤炭学报,2018,43(2):449-456.YANG Xiaobin, HAN Xinxing, LIU Enlai, et al. Properties of non-uniform deformation evolution of rock under uniaxial cyclic loading and unloading [J]. Journal of China Coal Society, 2018,43(2):449-456.
    [13] 韩心星.岩石非均匀变形破坏演化及统计损伤本构模型研究[D].北京:中国矿业大学(北京), 2019.HAN Xinxing. Study on evolution of heterogeneous deformation failure and statistical damage constitutive model of rock[D]. Beijing: China University of Mining and Technology , 2019.
    [14] 肖建清,丁德馨,徐根,等.常幅循环荷载下岩石的变形特性[J].中南大学学报(自然科学版),2010,41(2):685-691.XIAO Jianqing, DING Dexin, XU Gen, et al. Deformation characteristics of rock under constant amplitude cyclic loading [J]. Journal of Central South University (Science and Technology), 2010,41(2):685-691.
    [15] 席道瑛,徐松林,刘永贵,等.饱和砂岩的滞弹性弛豫衰减特征及微观机理的探索[J].物理学报,2012,61(14):515-522.XI Daoying, XU Songlin, LIU Yonggui, et al. Viscoelastic relaxation attenuation property for saturated sandstones and corresponding investigation of micro-scale mechanism[J]. Acta Physica Sinica, 2012,61(14):515-522.
    [16] 王观石,李长洪,胡世丽,等.岩体中应力波幅值随时空衰减的关系[J].岩土力学,2010,31(11):3487-3492.WANG Guanshi, LI Changhong, HU Shili, et al. A study of time-and spatial-attenuation of stress wave amplitude in rock mass[J]. Rock and Soil Mechanics, 2010,31(11):3487-3492.
    [17] Johnson P A, Rasolofosaon P N J. Nonlinear elasticity and stress-induced anisotropy in rock[J]. Journal of Geophysical Research: Solid Earth, 1996,101(B2):3113-3124.
    [18] Liu G, Karakus M, Mu Z. Propagation and attenuation characteristics of rock burst-induced shock waves in coal-rock medium[J]. Arabian Journal of Geosciences, 2019,12(4):1-14.
    [19] Clarke D R , Lawn B R , Roach D H. The role of surface forces in fracture[J]. Fracture Mechanics of Ceramics, 1986(1):341.
    [20] 程昀.具有轴向静荷载红砂岩应力波传播特性试验研究[D].南昌:江西理工大学, 2016.CHENG Yun. Experimental study on stress wave propagation characteristics of red sandstone with axial static load [D]. Nanchang: Jiangxi University of Science and Technology, 2016.
    [21] 王礼立.应力波基础[M].北京:国防工业出版社,2005.WANG Lili. Stress wave basis[M]. Beijing: National Defense Industry Press, 2005
    [22] 牛雷雷.黏弹性波传播及其诱致岩石损伤与破裂的研究[D].沈阳:东北大学,2016.NIU Leilei. Viscoelastic wave propagation and its induced rock damage and fracture[D]. Shengyang: Northeast University, 2016.
    [23] 席道瑛,谢端.岩石中应力波传播特性的实验研究[C]//第二届全国岩石动力学学术会议,1990.XI Daoying, XIE Duan. Experimental study on propagation characteristics of stress waves in rocks[C]//The Second National Conference on Rock Dynamics, 1990.
    [24] 杜启振,杨慧珠.线性黏弹性各向异性介质速度频散和衰减特征研究[J].物理学报,2002,51(9):2101-2108.DU Qizhen, YANG Huizhu. Velocity dispersion and attenuation in anisotropic linear viscoelastic media[J]. Acta Physica Sinica, 2002,51(9): 2101-2108
    [25] Zhao D, Zhang S, Zhao Y, et al. Experimental study on damage characteristics of granite under ultrasonic vibration load based on infrared thermography[J]. Environmental Earth Sciences, 2019,78(14).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张程,赵大军,张书磊,等.基于岩石表面位移场的超声波振动下花岗岩损伤特性试验研究[J].钻探工程,2021,48(3):39-45.
ZHANG Cheng, ZHAO Dajun, ZHANG Shulei, et al. Experimental study on damage characteristics of granite under ultrasonic vibration based on the displacement field of the rock surface[J]. Drilling Engineering, 2021,48(3):39-45.

复制
分享
文章指标
  • 点击次数:634
  • 下载次数: 740
  • HTML阅读次数: 304
  • 引用次数: 0
历史
  • 收稿日期:2020-10-30
  • 最后修改日期:2021-02-24
  • 录用日期:2021-02-01
  • 在线发布日期: 2021-03-22
  • 出版日期: 2021-03-10
文章二维码