4/6/2025, 9:42:01 AM 星期日
近井储层改造对天然气水合物藏降压开采特性影响的数值模拟研究
CSTR:
作者:
作者单位:

中国地质大学(北京)工程技术学院,北京100083

中图分类号:

TE3;P634

基金项目:

国家自然科学基金项目“天然气水合物储层结构改造理论与高效开发模式”(编号:51991364)


Numerical simulation of the influence of reservoir stimulation in the near wellbore area on the depressurization production characteristics of natural gas hydrate reservoir
Author:
Affiliation:

School of Engineering and Technology, China University of Geosciences, Beijing 100083, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文基于我国第一轮海域天然气水合物试采地质模型,利用Tough+Hydrate对近井储层改造后的水合物藏进行降压开采模拟研究。探究了多孔骨架渗流通道对气/水输送、压降传播、水合物分解等的影响机制,评估了近井储层改造在不同开采层位和整个开采过程中对产能提高的贡献大小。模拟结果表明:多孔骨架渗流通道内气/水流速高,可以起到导流、防砂的作用;近井储层改造可促进压降传播,加快水合物分解,但骨架通道的增产作用随开采时间增加逐渐减弱;近井储层改造在不同开采层位起到的增产效果不同,三相层中的增产效果最明显,但由于模拟改造范围较小、形成的多孔骨架渗流通道渗透性较低,增产效果不明显,多孔骨架渗流通道高度为50 cm时,2年产气量仅提高11.7%。

    Abstract:

    In this paper, based on the geological model of the first offshore natural gas hydrate production test of China, the production of nature gas hydrate reservoir after reservoir stimulation in the near wellbore area using depressurization was numerically studied through Tough+Hydrate. The influence mechanism of porous skeleton channel on gas/water transport, pressure drop propagation, hydrate decomposition was investigated, and the contribution of reservoir stimulation in the near wellbore area in different layers and in whole production process to productivity improvement was evaluated. The following simulated results were obtained. First, the gas/water velocity in the porous skeleton channel is high, which is helpful to diversion and sand control. Second, reservoir stimulation in the near wellbore area can promote the pressure drop propagation, and increase the decomposition rate of hydrate. However, the favorable effect of porous skeleton channel gradually decreases with the development of production. Third, the stimulation effect of reservoir stimulation in the near wellbore area in different layers is different, the result of three-phase layer is the most obvious. In this simulation, due to the small reservoir stimulation range and low permeability of the fracture, the increase in gas production is not obvious, the maximum increase was only 11.7 percent in two years when the height of porous skeleton channel is 50cm.

    参考文献
    [1] SLOAN E D, KOH C A. Clathrate hydrates of natural gases third edition[M]. Chemical Industries-New York Then Boca Raton-Marcel Dekker Then CRC Press, 2008:119.
    [2] 袁立明.《中国矿产资源报告2018》正式发布 中国矿业开启十大新篇章[J].地球,2018(11):16-17.YUAN Liming. 《China Mineral Resources Report 2018》 release officially Ten new chapters in China’s mining industry[J]. The Earth, 2018(11):16-17.
    [3] BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy Environmental Science, 2011,4(4):1206-1215.
    [4] MORIDIS G J, SLOAN E D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments[J]. Energy Conversion and Management, 2007,48(6):1834-1849.
    [5] 叶建良,秦绪文,谢文卫,等.中国南海天然气水合物第二次试采主要进展[J].中国地质,2020,47(3):557-568.YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020,47(3):557-568.
    [6] 王志远,孙宝江,郭艳利,等.热流体压裂开采天然气水合物装置及方法:201310129098.6[P].2013-07-17.WANG Zhiyuan, SUN Baojiang, GUO Yanli, et al. Unit and method of gas hydrate production by thermal fluid fracturing: 201310129098.6[P].2013-07-17.
    [7] LI B, MA X, ZHANG G, et al. Enhancement of gas production from natural gas hydrate reservoir by reservoir stimulation with the stratification split grouting foam mortar method[J]. Journal of Natural Gas Science and Engineering, 2020,81:103-473.
    [8] SUN Z, LI N, JIA S, et al. A novel method to enhance methane hydrate exploitation efficiency via forming impermeable overlying CO2 hydrate cap[J]. Applied Energy, 2019,240:842-850.
    [9] YU T, GUAN G, ABUDULA A, et al. Gas recovery enhancement from methane hydrate reservoir in the Nankai Trough using vertical wells[J]. Energy, 2019,166:834-844.
    [10] FENG J, WANG Y, LI X, et al. Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator[J]. Applied Energy, 2015,145:69-79.
    [11] 吴能友,李彦龙,万义钊,等.海域天然气水合物开采增产理论与技术体系展望[J].天然气工业,2020,40(8):100-115.WU Nengyou, LI Yanlong, WAN Yizhao, et al. Prospect of marine natural gas hydrate stimulation theory and technology system[J]. Natural Gas Industry, 2020,40(8):100-115.
    [12] 许红林,熊继有,王彬,等.鱼骨形水平井产能分析与效果对比[J].特种油气藏,2014,21(4):116-119.XU Honglin, XIONG Jiyou, WANG Bin, et al. Productivity analysis and effect comparison for pinnate horizontal wells[J]. Special Oil & Gas Reservoirs, 2014,21(4):116-119.
    [13] WILSON S J, HUNTER R B, COLLETT T S, et al. Alaska North Slope regional gas hydrate production modeling forecasts[J]. Marine and Petroleum Geology, 2011,28(2):460-477.
    [14] Li J-F, Ye J-L, Qin X-W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018,1(1):5-16.
    [15] Ye J-L, Qin X-W, Xie W-W, et al.The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020,2(3):197-209.
    [16] Too J L, Cheng A, Khoo B C, et al. Hydraulic fracturing in a penny-shaped crack. Part II: Testing the frackability of methane hydrate-bearing sand[J]. Journal of Natural Gas Science and Engineering, 2018,52:619-628.
    [17] 杨柳,石富坤,张旭辉,等.含水合物粉质黏土压裂成缝特征实验研究[J].力学学报,2020,52(1):224-234.YANG Liu, SHI Fukun, ZHANG Xuhui, et al. Experimental studies on the propagation characteristics of hydraulic fracture in clay hydrate sediment[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):224-234.
    [18] Konno Y, Jin Y, Yoneda J, et al. Hydraulic fracturing in methane-hydrate-bearing sand[J]. RSC Advances, 2016,6(77):73148-73155.
    [19] 孙友宏,马晓龙,郭威,等.泡沫注浆法改造海洋泥质粉砂型天然气水合物储层的方法:CN108180001B[P].2020-06-30.SUN Youhong, MA Xiaolong, GUO Wei, et al. Reformation of marine clayey silt nature gas hydrate reservoir by foam grouting method: CN108180001B[P]. 2020-06-30.
    [20] 李冰,孙友宏,马晓龙,等.基于注泡沫砂浆技术的泥质粉砂型天然气水合物开采方法:CN108278103B[P].2020-01-31.LI Bing, SUN Youhong, MA Xiaolong, et al. A mining method of clayey silt nature gas hydrate reservoir based on foam grouting technology: CN108278103B[P]. 2020-01-31.
    [21] SUN Y, MA X, GUO W, et al. Numerical simulation of the short-and long-term production behavior of the first offshore gas hydrate production test in the South China Sea[J]. Journal of Petroleum Science and Engineering, 2019,181:106196.
    [22] CHEN L, FENG Y, OKAJIMA J, et al. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea[J]. Journal of Natural Gas Science and Engineering, 2018,53:55-66.
    [23] QIN X, LIANG Q, YE J, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 2020,278:115649.
    [24] 李占钊,万庭辉,梁前勇,等.储层改造对天然气水合物开采产能的影响[J].地下水,2020,42(3):120-124.LI Zhanzhao, WAN Tinghui, LIANG Qianyong, et al. Influence of reservoirs reconstruction on nature gas hydrate production capacity[J]. Ground Water, 2020,42(3):120-124.
    [25] Sun J, Ning F, Li S, et al. Numerical simulation of gas production from hydrate-bearing sediments in the Shenhu area by depressurising: The effect of burden permeability[J]. Journal of Unconventional Oil and Gas Resources, 2015,12:23-33.
    [26] 刘浩伽,李彦龙,刘昌岭,等.水合物分解区地层砂粒启动运移临界流速计算模型[J].海洋地质与第四纪地质,2017,37(5):166-173.LIU Haojia, LI Yanlong, LIU Changling, et al. Calculation model for critical velocity of sand movement in decomposed hydrate cemented sediment[J]. Marine Geology & Quaternary Geology, 2017,37(5):166-173.
    [27] 石思思,陈星州,马健,等.南海北部神狐海域W19井天然气水合物储层类型与特征[J].特种油气藏,2019,26(3):24-29.SHI Sisi, CHEN Xingzhou, MA Jian, et al. Natural gas hydrate reservoir classification and characterization in the Well W19 of Shenhu Sea Area northern South China Sea[J]. Special Oil & Gas Reservoirs, 2019,26(3):24-29.
    [28] Uchida S, Klar A, Yamamoto K. Geomechanical effect of hydrate dissociation-induced stress relaxation[C]// Eage Workshop on Geomechanics & Energy, 2015.
    [29] SOGA K, NG M Y A, KLAR A. Coupled deformation-flow analysis for methane hydrate extraction[J]. Géotechnique, 2010,60(10):765-776.
    [30] 万义钊,吴能友,胡高伟,等.南海神狐海域天然气水合物降压开采过程中储层的稳定性[J].天然气工业,2018,38(4):117-128.WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu Area of the South China Sea[J]. Natural Gas Industry, 2018,38(4):117-128.
    [31] 李楠,王晓辉,吕一宁,等.天然气水合物开发面临的挑战及关键技术[J].石油科学通报,2016,1(1):171-174.LI Nan, WANG Xiaohui, Yining LÜ, et al. Challenges and key technologies in development of natural gas hydrates[J]. Petroleum Science Bulletin, 2016,1(1):171-174.
    [32] 杨林.海底水合物储层在高压水射流作用下的破碎过程及储层改造增产研究[D].长春:吉林大学,2018.YANG Lin. Study on the breaking process of marine hydratereservoirs subjected to high pressure water jet and the production increase of marine hydrate reservoirs reconstruction[D].Changchun: Jilin University, 2018.
    [33] 董钊,张崇,任冠龙,等.裂缝对压裂充填井产量的影响研究与应用[J].复杂油气藏,2016,9(3):74-79.DONG Zhao, ZHANG Chong, REN Guanlong, et al. Study on effect of fracture on productivity of frac-pack well and its application[J]. Complex Hydrocarbon Reservoirs, 2016,9(3):74-79.
    [34] SHAN L, FU C, LIU Y, et al. A feasibility study of using frac‐packed wells to produce natural gas from subsea gas hydrate resources[J]. Energy Science & Engineering, 2020,8(4):1247-1259.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

齐赟,孙友宏,李冰,等.近井储层改造对天然气水合物藏降压开采特性影响的数值模拟研究[J].钻探工程,2021,48(4):85-96.
QI Yun, SUN Youhong, LI Bing, et al. Numerical simulation of the influence of reservoir stimulation in the near wellbore area on the depressurization production characteristics of natural gas hydrate reservoir[J]. Drilling Engineering, 2021,48(4):85-96.

复制
分享
文章指标
  • 点击次数:740
  • 下载次数: 1079
  • HTML阅读次数: 831
  • 引用次数: 0
历史
  • 收稿日期:2020-12-28
  • 最后修改日期:2021-02-22
  • 录用日期:2021-03-15
  • 在线发布日期: 2021-04-10
  • 出版日期: 2021-04-10
文章二维码