4/9/2025, 10:15:32 AM 星期三
基于粒子群优化的融合特征选择钻速预测模型研究
作者:
作者单位:

1.成都理工大学机电工程学院,四川 成都 610059;2.成都环境工程建设有限公司,四川 成都 610000;3.成都理工大学环境与土木工程学院,四川 成都 610059

中图分类号:

P634

基金项目:

国家自然科学基金项目“量化月壤扰动特征的模块化月球钻进力学模型研究”(编号:42072344);四川省自然科学基金青年基金项目“基于数字孪生的动态时变钻进工况自适应迁移模型研究”(编号:2024NSFSC0817)


Research on a rate of penetration (ROP) prediction model based on feature selection integrated with particle swarm optimization (PSO)
Author:
Affiliation:

1.School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu Sichuan 610059, China;2.Chengdu Environmental Engineering Construction Co., Ltd, Chengdu Sichuan 610000, China;3.College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu Sichuan 610059, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统的钻速预测模型经常受到数据维度过高和特征相关性等问题的制约,导致钻速预测效率和精度受限。为了解决这些问题,本文提出了一种基于粒子群优化(PSO)的融合特征选择钻速预测算法模型。在数据预处理的基础上,首先以3个关键参数threshold_1、threshold_2和threshold_3为优化目标,通过结合历史数据和粒子群优化算法构建适应度函数,从而建立钻速预测模型。接着,使用实际钻井数据对所提出的钻速预测方法进行验证,并与传统的机器学习算法模型进行对比实验。实验结果表明,所提出的粒子群优化融合特征选择算法在特征选择方面具有更高的效率和准确性,使用优化后的融合特征优选结果所训练的4个机器学习钻速预测模型精度相较于优化前分别提升了59%、1%、3%和1%,相较于使用全部特征所训练的模型分别提升了24%、2%、4%和3%。本文为钻井工程中提取到的特征参数过多时提供了一种有效的特征选择方法,对特征选择算法在工程领域的实际应用具有一定的指导意义。

    Abstract:

    Traditional rate of penetration (ROP) prediction models have often been constrained by issues such as high data dimensionality and feature correlation, resulting in limited efficiency and accuracy of ROP prediction. To address these issues, a ROP prediction algorithm model based on particle swarm optimization (PSO) with integrated feature selection has been proposed in this paper. Based on data preprocessing, 3 key parameters, threshold_1, threshold_2, and threshold_3, have been chosen as optimization targets, and a fitness function has been constructed by combining historical data and the PSO algorithm, thereby establishing the ROP prediction model. Subsequently, the proposed ROP prediction method has been validated using actual drilling data and compared with traditional machine learning algorithm models. Experimental results show that the proposed PSO-based integrated feature selection algorithm achieves higher efficiency and accuracy in feature selection. Compared to before optimization, the accuracy of the 4 machine learning ROP prediction models trained using the optimized integrated feature selection results is improved by 59%, 1%, 3%, and 1%, respectively. Compared to models trained using all features, the accuracy has been improved by 24%, 2%, 4%, and 3%, respectively. This paper provides an effective feature selection method for cases where too many feature parameters have been extracted in drilling engineering. It offers significant guidance for the practical application of feature selection algorithms in the engineering field.

    参考文献
    [1] 郭旭涛.智能钻井技术研究现状[J].现代工业经济和信息化,2022,12(3):150-151,154.GUO Xutao. Research status of intelligent drilling technology[J]. Modern Industrial Economy and Informationization, 2022,12(3):150-151,154.
    [2] Shi X, Liu G, Gong X, et al. An efficient approach for real‐time prediction of rate of penetration in offshore drilling[J]. Mathematical Problems in Engineering, 2016. DOI: 10.1155/2016/3575380.
    [3] 张菲菲,崔亚辉,于琛,等.基于机器学习的钻井工况识别技术现状及发展[J].长江大学学报(自然科学版),2023,20(4):53-65,143.ZHANG Feifei, CUI Yahui, YU Chen, et al. Recent developments and future trends of drilling status recognition technology based on machine learning[J]. Journal of Yangtze University (Natural Science Edition), 2023,20(4):53-65,143.
    [4] 谭扬.机器学习算法在石油钻井领域的应用优化研究[D].北京:北京邮电大学,2019.TAN Yang. Research on application and optimization of machine learning algorithm in oil drilling field[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
    [5] 蒲先渤,李泽群,尹飞,等.基于PCA-LM-BP神经网络的岩石可钻性预测研究[J].钻探工程,2023,50(6):63-68.PU Xianbo, LI Zequn, YIN Fei, et al. Research on rock drill ability prediction based on PCA-LM-BP neural network[J]. Drilling Engineering, 2023,50(6):63-68.
    [6] Deng Y, Chen M, Jin Y, et al. Theoretical and experimental study on the penetration rate for roller cone bits based on the rock dynamic strength and drilling parameters[J]. Journal of Natural Gas Science and Engineering, 2016,36, Part A:117-123.
    [7] 王亚飞,张占荣,刘华吉,等.基于模型融合的钻进参数识别岩石类型研究[J].钻探工程,2023,50(2):17-25.WANG Yafei, ZHANG Zhanrong, LIU Huaji, et al. Data?driven model for the identification of the rock type by drilling data[J]. Drilling Engineering, 2023,50(2):17-25.
    [8] 于洋,黄凯,李卉.基于机器学习和多源数据预处理技术的机械钻速预测方法研究[J].中国石油和化工标准与质量,2021,41(20):133-136.YU Yang, HUANG Kai, LI Hui. Research on drilling rate prediction method based on Machine Learning and Multi-source data preprocessing[J]. China Petroleum and Chemical Standard and Quality, 2021,41(20):133-136.
    [9] 王胜,赖昆,张拯,等.基于随钻振动信号与深度学习的岩性智能预测方法[J].煤田地质与勘探,2023,51(9):51-63.WANG Sheng, LAI Kun, ZHANG Zheng, et al. Intelligent lithology prediction method based on vibration signal while drilling and deep learning[J]. Coal Geology & Exploration, 2023,51(9):51-63.
    [10] Barbosa L F F M, Nascimento A, Mathias M H. Machine learning methods applied to drilling rate of penetration prediction and optimization-A review[J]. Journal of Petroleum Science and Engineering, 2019,183:106332.
    [11] Moraveji M K, Naderi M. Drilling rate of penetration prediction and optimization using response surface methodology and bat algorithm[J]. Journal of Natural Gas Science and Engineering, 2016,31:829-841.
    [12] Sabah M, Talebkeikhah M, Wood D A, et al. A machine learning approach to predict drilling rate using petrophysical and mud logging data[J]. Earth Science Informatics, 2019,12(3):319-339.
    [13] 康文豪,徐天奇,王阳光,等.双层特征选择和CatBoost-Bagging集成的短期风电功率预测[J].重庆理工大学学报(自然科学),2022,36(7):303-309.KANG Wenhao, XU Tianqi, WANG Yangguang, et al. Short-term wind power prediction based on double-layer feature selection and CatBoost-Bagging integration[J]. Journal of Chongqing University of Technology:Natural Science, 2022,36(7):303-309.
    [14] Alsabaa A, Gamal H, Elkatatny S, et al. Machine learning model for monitoring rheological properties of synthetic Oil-Based mud[J]. ACS Omega, 2022,7(18):15603-15614.
    [15] 甘超,汪祥,王鲁朝,等.基于区域多井数据优选与模型预训练的深部地质钻探过程钻速动态预测方法[J].钻探工程,2023,50(4):1-8.GAN Chao, WANG Xiang, WANG Luchao, et al. Dynamic prediction method of rate of penetration (ROP) in deep geological drilling process based on regional multi-well data optimization and model pre-training[J]. Drilling Engineering, 2023,50(4):1-8.
    [16] 邓少贵,张凤姣,陈前,等.基于混合机器学习算法的页岩薄互层识别方法[J].石油学报,2023,44(7):1097-1104.DENG Shaogui, ZHANG Fengjiao, CHEN Qian, et al. Identification of shale thin interbeds based on hybrid machine learning algorithm[J]. Acta Petrolei Sinica, 2023,44(7):1097-1104.
    [17] 曾凡辉,胡大淦,张宇,等.数据驱动的页岩油水平井压裂施工参数智能优化研究[J].石油钻探技术,2023,51(5):78-87.ZENG Fanhui, HU Dagan, ZHANG Yu, et al. Research on Data-Driven intelligent optimization of fracturing treatment parameters for shale oil horizontal wells[J]. Petroleum Drilling Techniques, 2023,51(5):78-87.
    [18] 曾小龙,李谦,魏宏超,等.基于南海巨厚塑性泥岩地层特征的钻速预测模型[J].煤田地质与勘探,2023,51(11):159-168.ZENG Xiaolong, LI Qian, WEI Hongchao, et al. Rate-of-penetration(ROP)prediction model based on formation characteristics of extremely thick plastic mudstone in South China Sea[J]. Coal Geology & Exploration, 2023,51(11):159-168.
    [19] 李洪烈,夏栋,王倩.基于回归模型的采集数据清洗技术[J].电光与控制,2022,29(4):117-120.LI Honglie, XIA Dong, WANG Qian. A sampled data cleaning technology based on regression model[J]. Electronics Optics & Control, 2022,29(4):117-120.
    [20] Wang X, Gan C, Cao W H. A novel drilling rate of penetration (ROP) prediction method using data pre-processing techniques and T-S fuzzy inference[C]// 2021 40th Chinese Control Conference (CCC) . Shanghai China, 2021:1261-1266..
    [21] 李谦,周长春,朱海燕,等.生产数据的整合与初步分析在钴井中的应用实例[J].钻探工程,2021,48(S1):85-95.LI Qian, ZHOU Changchun, ZHU Haiyan, et al. Application of integration and preliminary analysis of production data in drilling[J]. Drilling Engineering, 2021,48(S1):85-95.
    [22] 匡俊搴,赵畅,杨柳,等.一种基于深度学习的异常数据清洗算法[J].电子与信息学报,2022,44(2):507-513.KUANG Junqian, ZHAO Chang, YANG Liu, et al. An outlier cleaning algorithm based on deep learning[J]. Journal of Electronics & Information Technology, 2022,44(2):507-513.
    [23] 姜杰,霍宇翔,张颢曦,等.基于数字孪生的智能钻探服务平台架构[J].煤田地质与勘探,2023,51(9):129-137.JIANG Jie, HUO Yuxiang, ZHANG Haoxi, et al. Architecture of intelligent service platform for drilling based on digital twin[J]. Coal Geology & Exploration, 2023,51(9):129-137.
    [24] 乔永坚,刘晓琳,白亮.面向高维特征缺失数据的K最近邻插补子空间聚类算法[J].计算机应用,2022,42(11):3322-3329.QIAO Yongjian, LIU Xiaolin, BAI Liang. K-nearest neighbor imputation subspace clustering algorithm for high-dimensional data with feature missing[J]. Journal of Computer Applications, 2022,42(11):3322-3329.
    [25] 曹凯鑫,汤猛猛,葛建鸿,等.大气污染物PM2.5缺失数据插值方法的比较研究:基于北京市数据[J].环境与职业医学,2020,37(4):229-305.CAO Kaixin, TANG Mengmeng, GE Jianhong, et al. Comparison of methods to interpolate missing PM2.5 values: A ased on air surveillance data of Beijing[J]. Journal of Environmental and Occupational Medicine, 2020,37(4):229-305.
    [26] 王双敬,王玉杰,李旭,等.TBM掘进数据标准化预处理方法研究[J].现代隧道技术,2022,59(2):38-44,52.WANG Shuangjing, WANG Yujie, LI Xu, et al. Study of standardized pre-processing method of TBM tunnelling data[J]. Modern Tunnelling Technology, 2022,59(2):38-44,52.
    [27] 周长春,姜杰,李谦,等.基于融合特征选择方法的钻速预测模型研究[J].钻探工程,2022,49(4):31-40.ZHOU Changchun, JIANG Jie, LI Qian, et al. Research on drilling rate prediction model based on fusion feature selection algorithm[J]. Drilling Engineering, 2022,49(4):31-40.
    [28] 张涛,李艳萍,刘晓宇,等.基于自适应粒子群优化最小二乘支持向量机的深层变质岩测井岩性识别[J].地球物理学进展,2023,38(1):382-392.ZHANG Tao, LI Yanping, LIU Xiaoyu, et al. Lithology interpretation of deep metamorphic rocks with well logging based on APSO-LSSVM algorithm[J]. Progress in Geophysics, 2023,38(1):382-392.
    [29] 张宁,刘祺,邵俊杰,等.基于模糊粒子群算法的钻杆运移装置控制系统研究[J].煤田地质与勘探,2023,51(3):177-185.ZHANG Ning, LIU Qi, SHAO Junjie, et al. Research on control system of drill pipe conveying device based on fuzzy particle swarm optimization[J]. Coal Geology & Exploration, 2023,51(3):177-185.
    [30] 黄宇,顾智勇,张中印,等.基于差分量子粒子群优化算法的作业车间调度[J].科学技术与工程,2022,22(29):12848-12854.HUANG Yu, GU Zhiyong, ZHANG Zhongyin, et al. Job-shop scheduling problem based on differential quantum particle swarm optimization algorithm[J]. Science Technology and Engineering, 2022,22(29):12848-12854.
    [31] Ru Z L, Zhao H B, Zhu C X. Probabilistic evaluation of drilling rate index based on a least square support vector machine and Monte Carlo simulation[J]. Bulletin of Engineering Geology and the Environment, 2019,78(5):3111-3118.
    [32] 吕晓玲,宋捷.大数据挖掘与统计机器学习[M].北京:中国人民大学出版社,2016.Xiaoling LÜ, SONG Jie. Big data mining and statistical machine learning[M]. Beijing: China Renmin University Press, 2016.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胥知画,姜杰,周长春,等.基于粒子群优化的融合特征选择钻速预测模型研究[J].钻探工程,2025,52(2):134-143.
XU Zhihua, JIANG Jie, ZHOU Changchun, et al. Research on a rate of penetration (ROP) prediction model based on feature selection integrated with particle swarm optimization (PSO)[J]. Drilling Engineering, 2025,52(2):134-143.

复制
分享
文章指标
  • 点击次数:22
  • 下载次数: 1125
  • HTML阅读次数: 27
  • 引用次数: 0
历史
  • 收稿日期:2024-06-27
  • 最后修改日期:2024-07-30
  • 录用日期:2024-09-11
  • 在线发布日期: 2025-03-25
文章二维码