4/6/2025, 10:31:23 AM 星期日
基于钻进参数实时预测土体力学性质的Stacking集成模型
CSTR:
作者:
作者单位:

1.成都理工大学环境与土木工程学院,四川 成都 610059;2.长江岩土工程有限公司,湖北 武汉 430010;3.广东英格尔地质装备科技股份有限公司,广东 珠海 519085

中图分类号:

P634.5;TU43


Stacking integrated model for real-time prediction of soil mechanical properties based on drilling parameters
Author:
Affiliation:

1.College of Environment and Civil Engineering, Chengdu University of Technology, ChengduSichuan610059, China;2.Changjiang Geotechnical Engineering Corporation, WuhanHubei430010, China;3.Guangdong Yingle Geological Equipment Technology Co., Ltd., ZhuhaiGuangdong519085, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [19]
  • | | |
  • 文章评论
    摘要:

    岩土体物理力学参数对工程勘察、设计、施工等作业不可或缺,但常规取样试验或原位检测均存在明显的精度误差。据此本文提出基于勘察钻探的实时钻进参数,建立基于机器学习的随钻土体物理力学参数模型。通过采集位于珠海市国家高新技术产业开发区内20 m勘探孔的真实数据,将EP-200G型钻机实时随钻采集的钻压、扭矩和三轴振动作为输入数据,将全孔土体粘聚力、内摩擦角、含水量与弹性模量试验数据作为输出。基于建模数据分析,证明使用单算法的3类机器学习模型(支持向量机、神经网络和决策树)的预测精度最高仅为0.78,而基于Stacking理念的集成模型可将预测精度提升至最高0.98。结合该模型,进行了随钻参数与土体参数间的敏感性分析,证实当不同土体参数发生变化时,不同随钻参数会发生明显变化,证明了随钻参数预测土体参数的可靠性与适用性。

    Abstract:

    The physical and mechanical parameters of rock and soil are indispensable for engineering investigation, design, construction, and other operations, but conventional laboratory testing or in-situ tests have obvious accuracy errors. Accordingly, a real-drilling machine learning model was proposed in this paper which is used to predict the soil physical and mechanical parameters from drilling parameters. By collecting the actual data from several holes with the depth of 20 meters located in the National High-tech Industrial Development Zone of Zhuhai, the drilling pressure, torque, and triaxial vibration collected by the EP-200G drilling rig in real-time were used as input data, and the test data of soil cohesion, internal friction angle, water content and elastic modulus were used as output. Based on the established model, it is proved that the prediction accuracy of the machine learning models using single algorithms (including support vector machine, artificial neural networks and decision tree) can only reach 0.78 at most, while the integrated model based on the stacking concept can increase the prediction accuracy to a maximum of 0.98. Combined with this model, a sensitivity analysis between the drilling parameters and soil parameters was carried out, which confirmed that the drilling parameters would change significantly with the change of soil parameters, proving the reliability and applicability of using drilling parameters to predict soil parameters.

    参考文献
    [1] 徐卫亚,蒋中明.岩土样本力学参数的模糊统计特征研究[J].岩土力学,2004,25(3):342-346.
    [2] 张继周,缪林昌,刘峰.岩土参数的不确定性及其统计方法[J].岩土力学,2008(28):495-499.
    [3] 吴长富,朱向荣,刘雪梅.基于现行规范岩土参数的统计方法分析及应用[J].工程勘察,2005(3):5-7.
    [4] 陈炜韬,王玉锁,王明年,等.黏土质隧道围岩抗剪强度参数的概率分布及优化实例[J].岩石力学与工程学报, 2006,25(S2):3782-3787.
    [5] 苏永华,何满潮,孙晓明.大子样岩土随机参数统计方法[J].岩土工程学报,2001,23(1):117-119.
    [6] 李小勇,白晓红,谢康和.岩土参数概率分布统计意义上的优化分析[J].岩土工程技术,2000(3):130-133.
    [7] 王亚飞,张占荣,刘华吉,等.基于模型融合的钻进参数识别岩石类型研究[J].钻探工程,2023,50(2):17-25.
    [8] 陈嘉豪,李谦,曾小龙,等.结合地质导向作业的实时智能地层识别预测模型[J].钻探工程,2023,50(S1):135-142.
    [9] Najjar Y M, Basheer I A. Utilizing computational neural networks for evaluating the permeability of compacted clay liners[J]. Geotechnical & Geological Engineering, 1996,14(3):193-212.
    [10] Nath S. K., Chakraborty S., Singh S. K., et al. Velocity inversion in cross-hole seismic tomography by counter-propagation neural network, genetic algorithm and evolutionary programming techniques[J]. Geophysical Journal International, 1999,138(1):108-124.
    [11] Kaunda R. New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014,6(4):338-347.
    [12] 阮永芬,余东晓,吴龙,等.DE-GWO算法优化SVM反演软土力学参数[J].岩土工程学报,2021,43(S1):166-170.
    [13] 阮永芬,余东晓,杨均,等.PSO-SVM反演隧道周围加固软土的力学参数[J].公路交通科技,2020,37(6):87-96.
    [14] 李文斌,冯文凯,胡云鹏,等.基于随机森林回归分析的岩体结构面粗糙度研究[J].水文地质工程地质, 2023,50(1):87-93.
    [15] Zhang W, Wu C, Zhong H, et al. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization[J]. Geoscience Frontiers, 2021,12(1):469-477.
    [16] 张洁,胡金政,马建增,等.基于多元分析的花岗岩残积土物理力学性质概率分布模型[J].武汉大学学报(工学版), 2016,49(5):648-653.
    [17] 杨鹏,顾春生,董教社,等.基于多元回归模型与信息熵的岩土参数预测[J].地下空间与工程学报,2023,19(6):1782-1790,1808.
    [18] 李澄清,刘天为,张海洋,等.基于BP神经网络的土体细观力学参数反演分析[C]//2015年全国工程地质学术年会论文集.长春:中国地质学会,2015.
    [19] 陈庆贺.岩石力学参数随钻预测实验研究[D].徐州:中国矿业大学,2022.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李谦,周治刚,邓光宏,等.基于钻进参数实时预测土体力学性质的Stacking集成模型[J].钻探工程,2024,51(S1):61-69.
LI Qian, ZHOU Zhigang, DENG Guanghong, et al. Stacking integrated model for real-time prediction of soil mechanical properties based on drilling parameters[J]. Drilling Engineering, 2024,51(S1):61-69.

复制
分享
文章指标
  • 点击次数:14
  • 下载次数: 55
  • HTML阅读次数: 14
  • 引用次数: 0
历史
  • 收稿日期:2024-07-29
  • 最后修改日期:2024-07-29
  • 录用日期:2024-08-06
  • 在线发布日期: 2024-11-08
文章二维码