4/9/2025, 10:15:32 AM 星期三
南海西部高温高压低渗油藏注气驱油效率实验研究
作者:
作者单位:

1.中海油能源发展股份有限公司工程技术分公司中海油实验中心湛江实验中心


This research endeavor aims to examine the efficacy of gas injection as a method for improving oil recovery in the context of high-temperature, high-pressure, and low-permeability oil reservoirs located in the western region of the South China Sea.
Author:
Affiliation:

1. Zhanjiang Experimental Center of CNOOC Experimental Center,Engineering Technology Branch,CNOOC Energy Technology Services Corporation

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    鉴于南海西部高温高压低渗油藏注气开发的潜在可行性及提升油田开发效果的需求,本研究立足于室内实验,针对二氧化碳与烃类伴生气两种气体,在高温高压环境下进行了细管实验和长岩心驱替实验。通过对比分析两种气体的驱油效率,对其开发效果进行了系统评价。研究结果表明:在高温高压条件下注入CO2驱油效率最高达88.8%,不同注入方式中气水交替驱油效率最高达87.4%,注气倾角对驱油效率的影响不大,为3.2%。烃类伴生气驱、CO2驱可作为南海西部高温高压低渗油藏优选能量补充方式。

    Abstract:

    In light of the potential feasibility of gas injection for the development of high-temperature, high-pressure, low-permeability oil reservoirs in the western South China Sea and the imperative to enhance oilfield recovery efficiency, this study embarked on a series of laboratory experiments. These experiments were conducted with a focus on two gas types: carbon dioxide (CO2) and hydrocarbon-associated gas. Under high-temperature and high-pressure conditions, fine-tube experiments and long-core displacement tests were meticulously carried out.A comparative analysis of the oil displacement efficiency of the two gases was undertaken, leading to a comprehensive evaluation of their development performance. The research findings indicate that under high-temperature and high-pressure conditions, CO2 injection achieved a maximum oil displacement efficiency of 88.8%. Among various injection strategies, the alternating gas-water injection method yielded the highest displacement efficiency of 87.4%. The injection angle was found to have a maximum impact of 3.2% on the displacement efficiency. Notably, a significant decline in displacement efficiency was observed when the injection pressure dropped below 30 MPa, with the lower injection pressures correlating with an increased oil production capacity upon gas breakthrough.Hydrocarbon gas flooding and CO2 injection technologies are deemed applicable to the high-temperature, high-pressure, low-permeability oil reservoirs in the western South China Sea, demonstrating efficacy in enhancing formation energy and holding substantial potential for widespread application.

    参考文献
    [1] 谢玉洪.南海西部低渗油气藏勘探开发探索与实践[J].中国海上油气,2018,30(6):80-85.
    [2] 徐长贵.中国近海油气勘探新进展与勘探突破方向[J].中国海上油气,2022,34(1):9-16.
    [3] 范廷恩.中国海上低渗油气田开发历程、关键技术及攻关方向[J].中国海上油气,2024,v.36(03):95-109+240.
    [4] 冯高城,胡云鹏,姚为英等.注气驱油技术发展应用及海上油田启示.西南石油大学学报(自然科学版),2019,41(1):147-155.
    [5] 刘浩洋等.海上低渗油藏CO2混相驱可行性实验研究[J].非常规油气,2024,11(2):74-79.
    [6] 雷霄,邓传忠,米洪刚,等. 涠洲12-1油田注伴生气近混相驱替机理实验及模拟研究[J].石油钻采工艺,2007,29(6):32-34
    [7] 赵军.低渗油藏天然气驱可行性试验研究.第33届全国天然气学术年会论文集[C].南宁:中国石油学会天然气专业委员会,2023
    [8] 李士伦,周守信,杜建芬,等.国内外注气提高石油采收率技术回顾与展望[J]. 油气地质与采收率,2002,9(2):1-5.
    [9] 苏畅,孙雷,李士伦. CO2混相驱多级接触过程机理研究[J].西南石油学院学报,2001,23(2):33-36.
    [10] 郭平,霍丽君,姜彬,等. 芳48 CO2驱油先导试验区水气交替参数优化[J].中国石油大学学报(自然科学版),2013,36(6):89-93.
    [11] Novosad Z,Sibbald L R,Costain T G. Design of miscible solvents fora rich gas dri ve-comparison of slim tube tests with rising bubble tests[J]. Journal of Canadian Petroleum Technology,1990,29(1):37-42.
    [12] Thomas F B,Zhou X L,Benni on D B,et al. A comparat ive s tudyof RBA,P-x,multicontact and slim tube results[J]. Journal of Canadian Petroleum Technology,1994,33(2):17-25.
    [13] Dong M,Huang S,Dyer S B,et al. A comparison of CO2 minimummiscibility pressure determinations for Weyburn crude oil[J]Journal of Petroleum Science and Engineering,2001,31(1):13-22.
    [14] Rao D N,Lee J I. Determination of gas-oil miscibility conditions by interfacial tension measurements[J]. Journal of Colloid and Interface Science,2003,262(2):474-482.
    [15] 彭宝仔,罗 虎,陈光进,等.用界面张力法测定CO2与原油的最小混相压力[J].石油学报,2007,28(3):93-95.
    [16] 赵楠,王磊,孙雷,张辉,罗军.不同注入气体下低渗油藏注气开发室内评价[J].科学技术与工程,2020,20(04):1379-1385.
    [17] 国家能源局.最低混相压力实验测定方法-细管法:SY/T 6573-2016[S].北京:石油工业出版社.2016.
    [18] 中国国家标准化管理委员会.岩心分析方法:GB/T 29172-2012[S].北京:中国标准出版社.2012.
    [19] 孙玥.考虑隔夹层分布的低渗油藏参数粗化方法优化[D].西南石油大学,2018.
    [20] 唐洪俊,戚志林.油层物理[M].北京:石油工业出版社.2014.
    [21] 中国国家标准化管理委员会.岩石中两相流体相对渗透率测定方法:GB/T 28912-2012[S].北京:中国标准出版社.2012.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:34
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2025-01-21
  • 最后修改日期:2025-03-11
  • 录用日期:2025-03-18
文章二维码