摘要
在钻探工程中遇到孔内事故时,经常采用割刀来切割事故钻具,然而在切割事故钻具的同时也会涉及到切割周边岩石的问题。本研究针对刀具切割岩石的复杂工况条件,设计了不同退火温度下的聚晶立方氮化硼(Polycrystalline Cubic Boron Nitride Compact,简称PCBN)复合片对磨Si3N4球的摩擦磨损试验,采用了光学显微镜和X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线能谱仪(EDS)等表征方法,分析了退火温度对PCBN的影响和PCBN对磨Si3N4球的摩擦学行为。结果表明:高于800 ℃退火处理,PCBN粘结剂氧化生成TiO2。当800 ℃退火的PCBN对磨Si3N4球时,出现轻微的粘着磨损;900 ℃退火的PCBN对磨Si3N4球时,粘着磨损现象加重;然而,1000 ℃退火处理后,磨痕处磨粒磨损和粘着磨损共存。且PCBN对磨Si3N4球时,摩擦系数与退火温度有关。
关键词
《国土资源“十三五”科技创新发展规划》和《自然资源科技创新发展规划纲要》等国家重大战略项目分别制定了“三深一土”和“一核两深三系”等战
割刀切割钻具技术是解决孔内事故的重要方法之一,且常用的割刀材料是硬质合金,但是该类型割刀存在硬度低、易磨损、化学稳定性差等缺点,容易导致切割时间长、效率低、更换刀具频繁等情况。另一个行之有效的方法是使用聚晶立方氮化硼(Polycrystalline Cubic Boron Nitride Compact,简称PCBN)刀具,PCBN硬度、耐磨性、热导率、热稳定性等远优于硬质合
刀具切割钻具时,会产生大量的切削热,温度的升高可能会降低刀具的硬度,因此研究切削温度对PCBN热损伤的影响是保证刀具顺利切割的重要内容之一。Abrao
总结以上研究发现PCBN刀具的切削温度达1000 ℃,并且PCBN刀具与工件接触时刀面上的压力可达2~3 GP
此外,根据摩擦学基本理论,刀具切削钻具过程可简化为刀具材料与钻具之间在不同工况条件下的摩擦磨损问
目前,学者对PCBN切削硬质金属材料的磨损机理及切削热对PCBN的影响等进行了广泛而深入的研究,且取得了大量有益的研究成果。然而PCBN刀具在切削钻具的过程中同样会与岩石发生切
本试验选用的材料是PCBN复合片和氮化硅球(Si3N4),两种材料的物理性质如

图1 CBN样品表征
Fig.1 The image of PCBN
退火处理所使用的电炉是由北京科伟永兴仪器有限公司生产的SX2-5-12型箱式高温电阻炉。大量的研究发现聚晶立方氮化硼刀具切削不同材料时产生的温度范围在600~1000 ℃之
本试验使用MS-T3001型球盘摩擦计进行摩擦测试,该仪器是由中国兰州华辉仪器技术有限公司制造,其原理图如

图2 T3001型摩擦磨损试验机原理示意
Fig.2 The principle diagram of T3001 friction and wear testing machine
为了研究PCBN的磨损轨迹和对磨球的磨斑,本试验选用光学显微镜、维氏硬度计、X射线衍射仪(XRD)、扫描电子显微镜(SEM)和X射线能谱仪(EDS)分析退火温度对PCBN的影响和PCBN对磨Si3N4的摩擦学行为。
其中本试验采用的光学显微镜是由日本奥林巴斯(Olympus)生产的BX51型。XRD型号为D/ max2500(Cu Kα,λ=1.5406 Å),主要目的是研究各种退火温度下PCBN的相组成。SEM和EDS是为了检查退火后PCBN的微观形貌和元素分布。维氏硬度计是由Buelher 公司生产的Micromet-6030型,测量硬度时的负载为9.8 N,保持时间为30 s,本实验在每个样品上检查5个位置并计算平均硬度,并按照1 HV等于9.8 MPa进行单位换算。

图3 不同退火温度后PCBN的性能变化
Fig.3 Changes in PCBN after annealing at
different temperatures
为了进一步探究退火温度对PCBN的影响,测量了PCBN的物相变化(如

图4 不同退火温度下的XRD
Fig.4 XRD patterns after annealing at different temperatures

图5 不同退火温度后的PCBN表面SEM图像
Fig.5 SEM images of annealed PCBN at different temperatures
不同退火温度后PCBN/Si3N4的摩擦系数(Friction coefficient,简称CoF)如

图6 不同退火温度后的PCBN/Si3N4的CoF
Fig.6 PCBN/Si3N4 CoF after annealing at different temperatures
为了充分理解CoF与退火温度之间的关系,对PCBN表面的形貌进行了进一步研究。

图7 不同温度退火处理后PCBN对磨Si3N4球的磨斑图像
Fig.7 Wear spot images of grinding Si3N4 balls after heat treatment at different temperatures

图8 不同温度退火后PCBN样品对磨Si3N4时的磨痕SEM图像
Fig.8 SEM images of wear scars on PCBN samples after heat treatment at different temperatures after grinding Si3N4
为了进一步探究对磨球的特性,计算了对磨球的磨损率(如

图9 不同温度退火后Si3N4球的磨损率
Fig.9 Wear rate of Si3N4 balls after heat treatment at different temperatures
不同温度退火后PCBN对磨Si3N4时的磨痕形貌和对应的磨痕界面如

图10 不同温度退火后PCBN对磨Si3N4时的磨痕形貌
Fig.10 Wear scar morphology of PCBN samples after grinding at different temperatures for Si3N4
为了更加清晰地了解退火处理后磨痕变化,使用了高倍的SEM图像和EDS元素分析(如

图11 900、1000 ℃退火处理后PCBN对磨Si3N4的磨痕SEM图像和EDS分析
Fig.11 SEM image and EDS analysis of wear scar boundary of PCBN sample at heat treatment at 900 ℃ and 1000 ℃ after grinding Si3N4
界面的相结构和形态决定了摩擦时的CoF。在600~800 ℃时达不到TiN、TiB2和CBN被氧化所需的活化能,因此PCBN的表面没有明显变化。故与常温PCBN相比,600~800 ℃时的CoF略有增加。经800 ℃退火处理的PCBN对磨Si3N4球时,在高载荷和摩擦高温下,产生了粘着磨损,如

图12 PCBN/Si3N4摩擦界面示意
Fig.12 Schematic diagram of PCBN/Si3N4 friction interface
Si3N4与PCBN样品对磨时,在磨损开始时,Si3N4球的最低点与PCBN进行摩擦,即为点点摩擦,如
本文依据PCBN割刀切削岩石理论,探究了不同退火温度对PCBN的影响和PCBN对磨Si3N4球时的摩擦特性,得出以下结论:
(1)当退火温度>800 ℃时,PCBN的粘结剂会发生相变,与氧元素反应生成TiO2。随着退火温度的升高,TiO2的生成量变多。
(2)PCBN对磨Si3N4球时,摩擦系数随着退火温度的升高总体呈现上升的趋势,但是经过1000 ℃退火处理后,摩擦系数小于900 ℃退火处理,这是由于经过1000 ℃退火处理后,有大量TiO2相的生成。
(3)PCBN对磨Si3N4球时,磨损机理与退火温
度有关。常温PCBN对磨Si3N4球时未发现粘着磨损;800 ℃退火后,磨痕边界出现轻微的粘着磨损;900 ℃退火后,PCBN由于相变导致出现大量的粘着磨损;1000 ℃退火后,由于TiO2、CBN等剥落物产生,出现了粘着磨损和磨粒磨损共存的形式。
参考文献(References)
国土资源部.国土资源“十三五”科技创新发展规划[Z].2016. [百度学术]
Ministry of Land and Resources. Land and resources “13th Five-Year” scientific and technological innovation development plan[Z]. 2016. [百度学术]
自然资源部.自然资源科技创新发展规划纲要[Z].2018. [百度学术]
Ministry of Land and Resources. Outline of the natural resources science and technology innovation development plan[Z]. 2018. [百度学术]
张金昌.地质钻探技术与装备21世纪新进展[J].探矿工程(岩土钻掘工程),2016,43 (4):10-17. [百度学术]
ZHANG Jinchang. New development of the 21st century geological drilling technology and equipment[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2016,43(4):10-17. [百度学术]
孙建华,刘秀美,王志刚,等.地质钻探孔内复杂情况和孔内事故种类梳理分析[J].探矿工程(岩土钻掘工程),2017,44(1): 4-9. [百度学术]
SUN Jianhua, LIU Xiumei, WANG Zhigang, et al. Classification and analysis on complex cases and accidents in geological drilling holes[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2017,44(1):4-9. [百度学术]
李粤南.深部孔段卡、埋钻事故防治对策的探讨[J].探矿工程(岩土钻掘工程),2011,38(9): 2-5. [百度学术]
LI Yuenan. Discussion of prevention measures for bit freezing and burying accidents in deep borehole[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2011,38(9):2-5. [百度学术]
胡郁乐,张绍和.钻探事故预防与处理知识问答[M].长沙:中南大学出版社,2010. [百度学术]
HU Yule, ZHANG Shaohe. Questions and answers on drilling accident prevention and treatment knowledge[M]. Changsha: Central South University Press, 2010. [百度学术]
蒋希文.钻井事故与复杂问题(第二版)[M].北京:石油工业出版社,2006. [百度学术]
JIANG Xiwen. Drilling accidents and complex problems (Second Edition)[M]. Beijing: Petroleum Industry Press, 2006. [百度学术]
陈永杰,王海阔,彭进,等.聚晶立方氮化硼的制备方法及应用进展[J].金刚石与磨料磨具工程,2015,35(2):74-80. [百度学术]
CHEN Yongjie, WANG Haikuo, PENG Jin, et al. Production method stand application of polycrystalline cubic boron nitride[J]. Diamond & Abrasives Engineering, 2015,35(2):74-80. [百度学术]
王光祖.立方氮化硼磨具新近探究综述[J].超硬材料工程,2016,28(4):42-46. [百度学术]
WANG Guangzu. Review of recent research on cubic boron nitride grinding tools[J]. Superhard material Engineering, 2016,28(4):42-46. [百度学术]
Zhao Z, Xu B, Tian Y. Recent advances in superhard materials[J]. Annual Review of Materials Research, 2016,46:383-406. [百度学术]
于启勋.超硬刀具材料的发展与应用[J].工具技术,2004,38(11):9-12. [百度学术]
YU Qixun. Developmeng and application of ultrahard cutting tool material[J]. Tool Engineering, 2004,38(11):9-12. [百度学术]
Dewes R C, Aspinwall D K. A review of ultra high speed milling of hardened steels[J]. Journal of Materials Processing Technology, 1997,69:1-17. [百度学术]
Chou Y K, Evans C J. Cubic boron nitride tool wear in interrupted hard cutting[J]. Wear, 1999,225-229:234-245. [百度学术]
Abrao A M, Aspinwall D K. Temperature evaluation of cutting tools during machining of hardened bearing steel using polycrystalline cubic boron nitride and ceramic cutting tools[J]. Materials Science and Technology, 1997,13(5):445-450. [百度学术]
Shalaby M A, Hakim M A, Veldhuis S C. A thermal model for hard precision turning[J]. The International Journal of Advanced Manufacturing Technology, 2018,98:2401-2413. [百度学术]
Ren X J, Yang Q X, James R D, et al. Cutting temperatures in hard turning chromium hardfacings with PCBN tooling[J]. Journal of Materials Processing Technology, 2004,147(1): 38-44. [百度学术]
Harris T K, Brookes E J, Taylor C J. The effect of temperature on the hardness of polycrystalline cubic boron nitride cutting tool materials[J]. International Journal of Refractory Metals and Hard Materials, 2004,22(2-3):105-110. [百度学术]
Chen L, Tai B L, Chaudhari R G, et al. Machined surface temperature in hard turning[J]. International Journal of Machine Tools & Manufacture, 2017,121:10-21. [百度学术]
于英华.机械制造技术基础[M].北京:机械工业出版社,2013. [百度学术]
YU Yinghua. Fundaments of mechanical manufacturing technology[M]. Beijing: Mechanical Industry Press, 2013. [百度学术]
Cerce L, Pusavec F. Increasing machinability of grey cast iron using cubic boron nitride tools: Evaluation of wear mechanisms[J]. Indian Journal of Engineering and Materials Sciences, 2016,23: 65-78. [百度学术]
Braghini A, Coelho R T. An investigation of the wear mechanisms of polycrystalline cubic boron nitride (PCBN) tools when end milling hardened steels at low/medium cutting speeds[J]. International Journal of Advanced Manufacturing Technology, 2001,17(4):244-251. [百度学术]
Liu X L, Wen D H, Li Z J, et al. Experimental study on hard turning hardened GCr15 steel with PCBN tool[J]. Journal of Materials Processing Technology, 2002,129(1):217-221. [百度学术]
Yang H, Ding N, Niu X, et al. Wear mechanism of PCBN hard cutting the powder metallurgy valve seats[J]. Key Engineering Materials, 2016,693:996-1002. [百度学术]
王成彪,刘家浚,韦淡平,等.摩擦学材料及表面工程[M].北京:国防工业出版社,2012. [百度学术]
WANG Chengbiao, LIU Jiajun, WEI Danping, et al. Tribological materials and surface engineering [M]. Beijing: National Defense Industry Press, 2012. [百度学术]
Watanabe S, Miyake S, Murakawa M. Tribological properties of cubic, amorphous and hexagonal boron nitride films[J]. Surface and Coatings Technology, 1991,49:406-410. [百度学术]
Watanabe S, Miyake S, Murakawa M. Tribological behavior of cubic boron nitride film sliding against diamond[J]. Journal of Tribology, 1995,117:629-632. [百度学术]
Watanabe S, Miyake S, Jin M, et al. Frictional behaviors of cubic BN film sliding against DLC[J]. Tribology International, 2004,37:923-927. [百度学术]
Chong Y M, Ye Q, Yang Y, et al. Tribological study of cubic boron nitride films[J]. Diamond and Related Materials, 2010,19:654-660. [百度学术]
Liu E L, An W Z, Zhang C, et al. Experimental research on oxidation behavior when cutting Ti-5553 with cemented carbide and PCBN tools[J]. Ferroelectrics, 2020,563:128-138. [百度学术]
Qin W B, Yue W, Wang C B. Understanding integrated effects of humidity and interfacial transfer film formation on tribological behaviors of sintered polycrystalline diamond[J]. RSC Advances, 2015,5:53484-53496. [百度学术]
Sanchez-Lopez J C, Erdemir A, Donnet C, et al. Feiction⁃in⁃duced structural transformations of diamond⁃like carbon coatings under various atmospheres[J]. Surface Coating Technology, 2003,163:444-450. [百度学术]
Schall J D, Gao G, Harrison J A. Effects of adhesion and transfer film formation on the tribology of self⁃mated DLC contacts[J]. Journal of Physical Chemistry C. 2009,114:5321-5330. [百度学术]
Bushlya V, Gutnichenko O, Zhou J, et al. Effects of cutting speed when turning age hardened inconel 718 with PCBN tools of binderless and Low-CBN grades[J]. Machining Science and Technology, 2013,17:497-523. [百度学术]
Tsutomu I, Hiroshi S. Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method[J]. Thin Solid Films, 1991,195:99-110. [百度学术]