摘要
本文基于我国第一轮海域天然气水合物试采地质模型,利用Tough+Hydrate对近井储层改造后的水合物藏进行降压开采模拟研究。探究了多孔骨架渗流通道对气/水输送、压降传播、水合物分解等的影响机制,评估了近井储层改造在不同开采层位和整个开采过程中对产能提高的贡献大小。模拟结果表明:多孔骨架渗流通道内气/水流速高,可以起到导流、防砂的作用;近井储层改造可促进压降传播,加快水合物分解,但骨架通道的增产作用随开采时间增加逐渐减弱;近井储层改造在不同开采层位起到的增产效果不同,三相层中的增产效果最明显,但由于模拟改造范围较小、形成的多孔骨架渗流通道渗透性较低,增产效果不明显,多孔骨架渗流通道高度为50 cm时,2年产气量仅提高11.7%。
天然气水合物是由水与天然气在高压低温条件下形成的结晶物
如何有效实现天然气水合物增产、稳产和高产是实现商业化开采亟需解决的关键问题之一。近年来,储层改造增产方式陆续被提出,国内外学者也围绕水合物增产开展了大量实验和数值模拟研究。王志远
近井区域储层的渗透性和强度关系着油气藏产能和开采井安全。我国南海泥质粉砂水合物储层具有低孔渗、未成岩和弱胶结等特
为探明近井储层改造对降压开采的影响机制,本文基于我国第一轮海域水合物试采区域的地层数据,建立了含上覆层、水合物层、三相层、游离气层和下伏层的复杂地质模型,利用Tough+Hydrate对近井储层改造后的水合物藏进行了降压开采数值模拟研究。重点关注了多孔骨架渗流通道的产气速率、产水速率及气水比的演化规律,并与储层渗透通道作对比,分析了多孔骨架在水合物藏中的不同开采层位的作用,明确了多孔骨架对水合物开采的贡献大小;此外,探究了开采过程中储层温度、压力、水合物饱和度和气体饱和度的分布特征,进而分析了近井储层改造对压降传播、水合物分解和气/水产出的影响机制,为后续天然气水合物储层的改造方案制定和优化提供支撑。
模拟区域位于我国在南海第一次水合物试采井SHSC-4所在的W17站位,位于南海北坡西沙海槽与东沙群岛之间。该区域海床较为平坦(平均坡度<3°),海水深度为1000~1700 m,海底温度为3.3~3.7 ℃,地温梯度为45~67 ℃/km,海底压力>10 MPa,满足水合物成矿地质和热力学条

图1 近井储层改造数值模拟模型
Fig.1 Reservoir stimulation in the near wellbore area numerical simulation model
在模型初始化方面,我们参考了之前发表的文
本文在开采井参数选取中参考了前人数据,采用单一直井进行开采,将生产井段长度设置为70 m,从水合物层开始,到游离气层20 m处结束,井径为0.1
注: 表中L表示多孔骨架渗流通道长度,H表示多孔骨架渗流通道高度。
由于开采井和多孔骨架渗流通道周边区域内传质传热、相变过程非常剧烈,该区域的网格需划分得更加细密。本文模拟的多孔骨架渗流通道均分布在距离井筒5 m的范围内,井周5 m区域的网格划分较为精细,共划分了50个网格,其尺寸为0.1 m,随着r增大,剩下的网格呈指数增长到100 m,最终,径向被离散为120个网格。在轴向网格划分的过程中,根据不同的骨架通道高度,采取了不同的网格划分方案,其中,骨架通道作为一层网格,随着远离骨架通道,网格厚度也逐渐变大。最终,整个区域的网格被离散成以下3种情况,骨架通道高度为2、20、30、40、50 cm的模型,模型中的最小层厚分别为0.02、0.2、0.3、0.4、0.5 m,沿Z方向的层数分为190、178、130层,网格总数分别为22800个(190×120)、21360个(178×120)、19920个(166×120)、15600个(130×120)、15600个(130×120),为活跃网格。剩余网格为划分上下边界的不活跃网格,即网格的温度、压力、各相饱和度及渗透率等参数随模拟过程不断改变,共3240个。
经近井储层改造后,气/水是经过多孔骨架渗流通道或低渗的储层通道逐渐向井筒流动而产出的。为明确骨架通道对气/水产出的贡献,我们比较了骨架通道(RSCG和RSCW)和储层通道(RRCG和RRCW)的产气/产水速率变化趋势(如

图2 多孔骨架渗流通道和储层通道的产气/产水速率变化趋势
Fig.2 Variation trend of gas/water yield rate of porous skeleton and reservoir channels
气水比是衡量天然气水合物开采能效的一个关键因素。开采过程中多孔骨架渗流通道和储层通道中的气水比变化趋势如

图3 多孔骨架渗流通道和储层通道的气水比变化趋势
Fig.3 Variation trend of gas/water ratios of porous skeleton and reservoir channels
为进一步分析在不同开采层位中多孔骨架渗流通道对输送气体起到的作用,对比了不同开采层位在开采60 d和720 d时多孔骨架渗流通道和储层通道的平均产气速率如

图4 不同层位多孔骨架渗流通道和储层通道平均产气速率
Fig.4 Average gas production rates of porous skeleton and reservoir channels in different layers
通过上述分析可以得出高压旋喷注浆产生的多孔骨架渗流通道可作为气/水产出高速通道,且具有一定的防砂功能。为进一步明确近井储层改造对增产的作用,对比了不同近井储层改造参数条件下产气量和产水量变化趋势(见

图5 不同多孔骨架渗流通道参数条件下产气/产水量变化趋势
Fig.5 Variation trend of gas/water production under different porous skeleton channel parameters
开采过程中水合物储层内部压力分布特征如

图6 压力分布云图
Fig.6 Spatial distribution of pressure
温度分布情况可反应水合物分解速率的差异,温度越低表明水合物分解越剧烈,从

图7 温度分布云图
Fig.7 Spatial distribution of temperature
近井储层改造对水合物分解的影响可从水合物饱和度分布云图中直观看出,如

图8 水合物饱和度分布云图
Fig.8 Spatial distribution of hydrate saturation

图9 气体饱和度分布云图
Fig.9 Spatial distribution of gas saturation
(1)近井储层改造产生的多孔骨架渗流通道可作为气/水产出主要通道,其产气/产水速率高于储层通道1~2个数量级,且骨架通道处的水合物分解较快,气体饱和度较高,导致较高的气水比,在一定程度上提高了降压开采能效;骨架通道的存在会相应地降低储层渗流通道的产气/产水速率,减弱了气/水产出对沉积物颗粒的携带能力,具有一定的防砂作用。
(2)近井储层改造可促进压降向储层内部传播和加快多孔骨架渗流通道周边水合物分解,经储层改造后,低压区(<10 MPa)可在开采20 d时从距离开采井10 m处扩展至13 m左右,泄压面积明显增大,导致水合物呈现非均质分解,低温区和水合物分解前沿呈锯齿状分布,骨架通道处气体饱和度较大;但随着开采进行,水合物分解前沿逐渐远离骨架通道区域,骨架通道对压降传播和水合物分解的促进作用就会逐渐减弱,储层内各参数分布特征差异性变小。
(3)近井储层改造在不同开采层位起到的增产效果不同,相比于水合物层和游离气层,整个开采过程中,三相层中近井储层改造起到的增产效果最明显,多孔骨架渗流通道与储层通道产气速率差异最大,骨架通道一方面可提高水合物分解速率,另一方面能加快原始游离气的产出;但在本文模拟的骨架通道参数条件下,开采2年产气量提高不明显,最高仅增产11.7%,这主要跟模拟骨架通道长度较短、渗透性较低有关,储层改造效果不明显,要实现水合物产能量级提升,需扩大储层改造范围。
参考文献(References)
SLOAN E D, KOH C A. Clathrate hydrates of natural gases third edition[M]. Chemical Industries-New York Then Boca Raton-Marcel Dekker Then CRC Press, 2008:119. [百度学术]
袁立明.《中国矿产资源报告2018》正式发布 中国矿业开启十大新篇章[J].地球,2018(11):16-17. [百度学术]
YUAN Liming. 《China Mineral Resources Report 2018》 release officially Ten new chapters in China’s mining industry[J]. The Earth, 2018(11):16-17. [百度学术]
BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy Environmental Science, 2011,4(4):1206-1215. [百度学术]
MORIDIS G J, SLOAN E D. Gas production potential of disperse low‑saturation hydrate accumulations in oceanic sediments[J]. Energy Conversion and Management, 2007,48(6):1834-1849. [百度学术]
叶建良,秦绪文,谢文卫,等.中国南海天然气水合物第二次试采主要进展[J].中国地质,2020,47(3):557-568. [百度学术]
YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020,47(3):557-568. [百度学术]
王志远,孙宝江,郭艳利,等.热流体压裂开采天然气水合物装置及方法:201310129098.6[P].2013-07-17. [百度学术]
WANG Zhiyuan, SUN Baojiang, GUO Yanli, et al. Unit and method of gas hydrate production by thermal fluid fracturing: 201310129098.6[P].2013-07-17. [百度学术]
LI B, MA X, ZHANG G, et al. Enhancement of gas production from natural gas hydrate reservoir by reservoir stimulation with the stratification split grouting foam mortar method[J]. Journal of Natural Gas Science and Engineering, 2020,81:103-473. [百度学术]
SUN Z, LI N, JIA S, et al. A novel method to enhance methane hydrate exploitation efficiency via forming impermeable overlying CO2 hydrate cap[J]. Applied Energy, 2019,240:842-850. [百度学术]
YU T, GUAN G, ABUDULA A, et al. Gas recovery enhancement from methane hydrate reservoir in the Nankai Trough using vertical wells[J]. Energy, 2019,166:834-844. [百度学术]
FENG J, WANG Y, LI X, et al. Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot‑scale hydrate simulator[J]. Applied Energy, 2015,145:69-79. [百度学术]
吴能友,李彦龙,万义钊,等.海域天然气水合物开采增产理论与技术体系展望[J].天然气工业,2020,40(8):100-115. [百度学术]
WU Nengyou, LI Yanlong, WAN Yizhao, et al. Prospect of marine natural gas hydrate stimulation theory and technology system[J]. Natural Gas Industry, 2020,40(8):100-115. [百度学术]
许红林,熊继有,王彬,等.鱼骨形水平井产能分析与效果对比[J].特种油气藏,2014,21(4):116-119. [百度学术]
XU Honglin, XIONG Jiyou, WANG Bin, et al. Productivity analysis and effect comparison for pinnate horizontal wells[J]. Special Oil & Gas Reservoirs, 2014,21(4):116-119. [百度学术]
WILSON S J, HUNTER R B, COLLETT T S, et al. Alaska North Slope regional gas hydrate production modeling forecasts[J]. Marine and Petroleum Geology, 2011,28(2):460-477. [百度学术]
Li J-F, Ye J-L, Qin X-W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018,1(1):5-16. [百度学术]
Ye J-L, Qin X-W, Xie W-W, et al.The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020,2(3):197-209. [百度学术]
Too J L, Cheng A, Khoo B C, et al. Hydraulic fracturing in a penny‑shaped crack. Part II: Testing the frackability of methane hydrate‑bearing sand[J]. Journal of Natural Gas Science and Engineering, 2018,52:619-628. [百度学术]
杨柳,石富坤,张旭辉,等.含水合物粉质黏土压裂成缝特征实验研究[J].力学学报,2020,52(1):224-234. [百度学术]
YANG Liu, SHI Fukun, ZHANG Xuhui, et al. Experimental studies on the propagation characteristics of hydraulic fracture in clay hydrate sediment[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):224-234. [百度学术]
Konno Y, Jin Y, Yoneda J, et al. Hydraulic fracturing in methane‑hydrate‑bearing sand[J]. RSC Advances, 2016,6(77):73148-73155. [百度学术]
孙友宏,马晓龙,郭威,等.泡沫注浆法改造海洋泥质粉砂型天然气水合物储层的方法:CN108180001B[P].2020-06-30. [百度学术]
SUN Youhong, MA Xiaolong, GUO Wei, et al. Reformation of marine clayey silt nature gas hydrate reservoir by foam grouting method: CN108180001B[P]. 2020-06-30. [百度学术]
李冰,孙友宏,马晓龙,等.基于注泡沫砂浆技术的泥质粉砂型天然气水合物开采方法:CN108278103B[P].2020-01-31. [百度学术]
LI Bing, SUN Youhong, MA Xiaolong, et al. A mining method of clayey silt nature gas hydrate reservoir based on foam grouting technology: CN108278103B[P]. 2020-01-31. [百度学术]
SUN Y, MA X, GUO W, et al. Numerical simulation of the short‑and long‑term production behavior of the first offshore gas hydrate production test in the South China Sea[J]. Journal of Petroleum Science and Engineering, 2019,181:106196. [百度学术]
CHEN L, FENG Y, OKAJIMA J, et al. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea[J]. Journal of Natural Gas Science and Engineering, 2018,53:55-66. [百度学术]
QIN X, LIANG Q, YE J, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 2020,278:115649. [百度学术]
李占钊,万庭辉,梁前勇,等.储层改造对天然气水合物开采产能的影响[J].地下水,2020,42(3):120-124. [百度学术]
LI Zhanzhao, WAN Tinghui, LIANG Qianyong, et al. Influence of reservoirs reconstruction on nature gas hydrate production capacity[J]. Ground Water, 2020,42(3):120-124. [百度学术]
Sun J, Ning F, Li S, et al. Numerical simulation of gas production from hydrate‑bearing sediments in the Shenhu area by depressurising: The effect of burden permeability[J]. Journal of Unconventional Oil and Gas Resources, 2015,12:23-33. [百度学术]
刘浩伽,李彦龙,刘昌岭,等.水合物分解区地层砂粒启动运移临界流速计算模型[J].海洋地质与第四纪地质,2017,37(5):166-173. [百度学术]
LIU Haojia, LI Yanlong, LIU Changling, et al. Calculation model for critical velocity of sand movement in decomposed hydrate cemented sediment[J]. Marine Geology & Quaternary Geology, 2017,37(5):166-173. [百度学术]
石思思,陈星州,马健,等.南海北部神狐海域W19井天然气水合物储层类型与特征[J].特种油气藏,2019,26(3):24-29. [百度学术]
SHI Sisi, CHEN Xingzhou, MA Jian, et al. Natural gas hydrate reservoir classification and characterization in the Well W19 of Shenhu Sea Area northern South China Sea[J]. Special Oil & Gas Reservoirs, 2019,26(3):24-29. [百度学术]
Uchida S, Klar A, Yamamoto K. Geomechanical effect of hydrate dissociation‑induced stress relaxation[C]// Eage Workshop on Geomechanics & Energy, 2015. [百度学术]
SOGA K, NG M Y A, KLAR A. Coupled deformation‑flow analysis for methane hydrate extraction[J]. Géotechnique, 2010,60(10):765-776. [百度学术]
万义钊,吴能友,胡高伟,等.南海神狐海域天然气水合物降压开采过程中储层的稳定性[J].天然气工业,2018,38(4):117-128. [百度学术]
WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu Area of the South China Sea[J]. Natural Gas Industry, 2018,38(4):117-128. [百度学术]
李楠,王晓辉,吕一宁,等.天然气水合物开发面临的挑战及关键技术[J].石油科学通报,2016,1(1):171-174. [百度学术]
LI Nan, WANG Xiaohui, LÜ Yining, et al. Challenges and key technologies in development of natural gas hydrates[J]. Petroleum Science Bulletin, 2016,1(1):171-174. [百度学术]
杨林.海底水合物储层在高压水射流作用下的破碎过程及储层改造增产研究[D].长春:吉林大学,2018. [百度学术]
YANG Lin. Study on the breaking process of marine hydratereservoirs subjected to high pressure water jet and the production increase of marine hydrate reservoirs reconstruction[D].Changchun: Jilin University, 2018. [百度学术]
董钊,张崇,任冠龙,等.裂缝对压裂充填井产量的影响研究与应用[J].复杂油气藏,2016,9(3):74-79. [百度学术]
DONG Zhao, ZHANG Chong, REN Guanlong, et al. Study on effect of fracture on productivity of frac‑pack well and its application[J]. Complex Hydrocarbon Reservoirs, 2016,9(3):74-79. [百度学术]
SHAN L, FU C, LIU Y, et al. A feasibility study of using frac‐packed wells to produce natural gas from subsea gas hydrate resources[J]. Energy Science & Engineering, 2020,8(4):1247-1259. [百度学术]