摘要
钻屑是在钻井工程中产生的一种固体废弃物,通常利用水泥对其进行固化处理。然而,水泥的生产过程伴随着大量二氧化碳的排放,这不仅增加了温室气体的排放量,也对环境保护造成不利影响。针对上述情况,本文提出了微生物诱导碳酸镁沉淀固化钻屑新方法。微生物诱导碳酸镁沉淀固化钻屑力学性能研究表明,固化体的强度随着含水量和尿素浓度的增加而降低,随着活性氧化镁浓度和养护时间的增加而升高。最低强度0.21 MPa,最高强度3.5 MPa,充分说明了优选配比的重要性。FTIR、XRD和SEM等表征结果发现,微生物诱导碳酸镁沉淀产物为玫瑰花状水菱镁石(4MgCO3•Mg(OH)2•4H2O)和针状水碳镁石(MgCO3•3H2O);产物以致密的碳酸盐网络状结构将松散的颗粒胶结成结构完整的固化体,从而阐明了微生物诱导碳酸镁沉淀固化钻屑的作用机制。
随着中国经济的快速增长,能源需求不断上升,石油和天然气作为国民经济发展的重要能源,已成为中国经济增长的主动
当前,针对钻屑的处理方法主要有路基填料、烧制水泥、免烧和烧结陶粒、混凝土掺合料和水泥固化/稳定等方
通过XRF(X-Ray Fluorescence)揭示了活性氧化镁物相组成,证明其主要由高纯度MgO组成,详细组分如
氧化物 | MgO | CaO | SiO2 | Fe2O3 | Al2O3 | MnO | SO3 |
---|---|---|---|---|---|---|---|
质量百分比/% | 96.142 | 1.791 | 0.863 | 0.324 | 0.057 | 0.035 | 0.789 |
通过分析其微观形貌,观察到活性氧化镁主要是以不光滑球形为主,表面为不规则片状结构,大小以微米计量,如

图1 活性氧化镁微观形貌
Fig.1 SEM images of active magnesium oxide samples
钻屑取自四川省内江市威远县页岩气生产区块,地层为龙马溪组,其微观形貌如

图2 钻屑微观形貌
Fig.2 SEM images of drill cuttings samples

图3 钻屑FTIR曲线
Fig.3 FTIT pattern of drill cuttings samples
波数/c | 官能团 | 物相组成 |
---|---|---|
2921 | CH3 | 脂肪烃 |
1428 | CH | 脂肪烃 |
2853 | CH3O | 甲氧基 |
1161、1052 | C-O | 羟基 |
448 | Si-O | SiO2 |
609 | Al-O | Al2O3 |
培养基配方:在1000 g去离子水中加入2%的尿素、1.5%酪蛋白胨、0.5%大豆蛋白胨和0.5%氯化钠。通过盐酸和氢氧化钠将培养基的酸碱度调整到7.3左右。培养基在121 ℃下灭菌30 min。取出培养基冷却到28 ℃,接种巴氏芽孢杆菌(ATCC11859),并放入28 ℃和转速120 r/min的恒温培养箱中培养18 h。培养过程中对微生物浓度进行测定,当浓度(OD600)达到2.0时,取出备用,并称其为菌悬液。
本研究使用4种浓度的活性氧化镁,分别为20%、15%、10%和5%;3种含水量,分别为30%、25%和20%;3种尿素浓度,分别为6 M、3 M和0 M。对照实验采用同等质量的去离子水替代菌悬液。首先,将称取的尿素、钻屑和活性氧化镁加入搅拌容器中,在240 r/min转速下搅拌2 min;然后,将菌悬液或去离子水加入搅拌容器中,在120 r/min转速下搅拌1 min;其次,将搅拌均匀的混合物倒入立方体模具中(尺寸:50 mm×50 mm×50 mm),24 h后将固化体脱模;最后,将固化体放置室温养护,养护温度25 ℃±1.5 ℃,湿度20%±5%,时间分别为3、7、14和28 d。
含水量/% | 活性氧化镁/% | 强度值/MPa | |||||||
---|---|---|---|---|---|---|---|---|---|
养护3 d | 养护7 d | 养护14 d | 养护28 d | ||||||
3 M尿素 | 6 M尿素 | 3 M尿素 | 6 M尿素 | 3 M尿素 | 6 M尿素 | 3 M尿素 | 6 M尿素 | ||
20 | 5 | 0.26 | 0.21 | 0.41 | 0.44 | 0.65 | 0.48 | 0.95 | 0.78 |
10 | 0.51 | 0.48 | 0.72 | 0.58 | 1.06 | 0.76 | 1.54 | 0.89 | |
15 | 0.95 | 0.76 | 1.07 | 0.95 | 1.66 | 1.15 | 1.81 | 1.20 | |
20 | 0.28 | 1.06 | 1.58 | 1.14 | 2.09 | 1.53 | 2.47 | 1.59 | |
25 | 5 | 0.19 | 0.14 | 0.41 | 0.19 | 0.63 | 0.42 | 0.71 | 0.76 |
10 | 0.50 | 0.50 | 0.69 | 0.68 | 0.98 | 0.62 | 1.25 | 0.92 | |
15 | 0.78 | 0.77 | 1.12 | 0.69 | 1.58 | 0.98 | 1.68 | 0.98 | |
20 | 1.12 | 0.92 | 1.35 | 0.88 | 1.88 | 1.05 | 1.92 | 1.21 | |
30 | 5 | 0.24 | 0.12 | 0.40 | 0.18 | 0.57 | 0.41 | 0.62 | 0.63 |
10 | 0.52 | 0.38 | 0.87 | 0.54 | 1.21 | 0.58 | 1.24 | 0.83 | |
15 | 0.87 | 0.70 | 0.97 | 0.64 | 1.43 | 0.89 | 1.45 | 0.93 | |
20 | 0.88 | 0.76 | 0.98 | 0.92 | 1.83 | 1.07 | 1.87 | 1.10 |
图

图4 活性氧化镁浓度与钻屑固化体强度的关系(含水量20%)
Fig.4 The relationship between magnesium oxide concentration and the strength of oil‑based drilling cuttings solidified body (water content 20%)

图5 活性氧化镁浓度与钻屑固化体强度的关系(含水量25%)
Fig.5 The relationship between magnesium oxide concentration and the strength of drilling cuttings solidified body (water content 25%)

图6 活性氧化镁浓度与钻屑固化体强度的关系(含水量30%)
Fig.6 The relationship between magnesium oxide concentration and the strength of drilling cuttings solidified body (water content 30%)
由
由
由

图7 养护时间与钻屑固化体强度的关系
Fig.7 The relationship between curing time and the strength of drilling cuttings solidified body

图8 含水量与钻屑固化体强度之间的关系
Fig.8 The relationship between water content and the strength of oil‑based drilling cuttings solidified body

图9 尿素浓度与钻屑固化体强度之间的关系
Fig.9 The relationship between urea content and the strength of drilling cuttings solidified body

图10 固化28 d后钻屑固化体的FTIR曲线
Fig.10 FTIR pattern of drill cuttings solidification after 28 days of curing
波数/c | 官能团 | 物相组成 |
---|---|---|
2923 | CH3 | 脂肪烃 |
1450 | CH | 脂肪烃 |
2854 | CH3O | 甲氧基 |
1095 | C-O | 羟基 |
468 | Si-O | SiO2 |
3701 | O-H | Mg(OH)2 |
3627 | O-H | 水菱镁石 |
2204 | C-O | 水菱镁石、水碳镁石 |
514 | Mg-O | 活性氧化镁 |

图11 固化28 d后钻屑固化体的XRD曲线
Fig.11 XRD pattern of drill cuttings solidification after 28 days of curing
Si—SiO2;Ba—BaSO4;H—水菱镁石;N—水碳镁石;P—活性氧化镁;B—Mg(OH)2
(1)基础试验研究表明:微生物诱导碳酸镁沉淀固化钻屑的主要影响因素为活性氧化镁浓度、养护时间、尿素浓度和含水量,且固化体的强度随着活性氧化镁浓度和养护时间增加而升高,随着尿素浓度和含水量增加而降低。当活性氧化镁浓度为20%、尿素加量0 M、含水量20%时,固化体最高强度为3.5 MPa。
(2)XRD和FTIR表征显示:固化体中除钻屑外,其余组分主要为活性氧化镁、氢氧化镁、玫瑰花状水菱镁石和针状水碳镁石,说明固化体中的主要产物为玫瑰花状水菱镁石和针状水碳镁石;活性氧化镁未完全反应,水解形成的氢氧化镁也未充分矿化,这解释了随着养护时间的延长固化体强度升高的原因。基于微观结构观察,发现产物以连续的碳酸盐网络将松散的钻屑颗粒胶结成结构完整的固化体。
参考文献(References)
汤凤林,赵荣欣,周欣,等.俄罗斯油气钻采废弃物处理及其利用研究[J].钻探工程,2022,49(5):202-207. [百度学术]
TANG Fenglin, ZHAO Rongxin, ZHOU Xin, et al. Research on processing and use of wastes in oil and gas drilling and production in Russia[J]. Drilling Engineering, 2022,49(5):202-207. [百度学术]
赵洪波,朱芝同,梁涛,等.页岩气基础地质调查钻井技术研究进展及展望[J].中国地质,2023,50(2):376-394. [百度学术]
ZHAO Hongbo, ZHU Zhitong, LIANG Tao, et al. Shale gas geological survey drilling technologies: Progress and prospect[J]. Geology in China, 2023, 50(2):376-394. [百度学术]
何远信,胡志方,单衍胜,等.公益性陆域油气地质调查钻探工程技术进展与攻关建议[J].钻探工程,2022,49(5):3-10. [百度学术]
HE Yuanxin, HU Zhifang, SHAN Yansheng, et al. Advances and research suggestions for onshore oil & gas survey drilling engineering for the public benefit[J]. Drilling Engineering, 2022,49(5):3-10. [百度学术]
张金成.第一性原理思维法在页岩气革命中的实践与启示[J].钻探工程,2022,49(2):1-8. [百度学术]
ZHANG Jincheng. First principle thinking promotes innovation of shale gas revolution[J]. Drilling Engineering, 2022,49(2):1-8. [百度学术]
赵全民,张金成,刘劲歌.中国页岩气革命现状与发展建议[J].探矿工程(岩土钻掘工程),2019,46(8):1-9. [百度学术]
ZHAO Quanmin, ZHANG Jincheng, LIU Jinge. Status of Chinese shale gas revolution and development proposal[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling, 2019,46(8):1-9. [百度学术]
张晓昂,刘国卫,齐治虎,等.河南省煤层气钻井技术发展历程及展望[J].钻探工程,2022,49(5):86-93. [百度学术]
ZHANG Xiao’ang, LIU Guowei, QI Zhihu, et al. Development and prospect of coalbed methane drilling technology in Henan province[J]. Drilling Engineering, 2022,49(5):86-93. [百度学术]
Ball A S, Stewart R J, Schliephake K. A review of the current options for the treatment and safe disposal of drill cuttings[J]. Waste Management and Research, 2012,30(5):457-473. [百度学术]
Liu D S , Wang C Q , Mei X D , et al. Environmental performance, mechanical and microstructure analysis of non‑fired bricks containing water‑based drilling cuttings of shale gas[J]. Construction and Building Materials, 2018,183:215-225. [百度学术]
Balgobin A, Ali A, Shah K, et al. Assessment of toxicity of two types of drill cuttings from a drilling rig on the Trinidad East coast using Metamysidopsis insularis[J]. Toxicological and Environmental Chemistry Reviews, 2012,94(5):930-943. [百度学术]
Johnson J D, Graney J R. Fingerprinting Marcellus Shale waste products from Pb isotope and trace metal perspectives [J]. Applied Geochemistry, 2015,60:104-115. [百度学术]
Authority E F S. Technical Guidance: Extrapolation of data from major species to minor species regarding the assessment of additives for use in animal nutrition[J]. Efsa Journal, 2008,803:1-5. [百度学术]
刘宇程,陈文博,陈媛媛,等.水泥窑协同处置掺加萃余钻屑对水泥熟料性能的影响[J].环境工程,2020,38(11):157-162. [百度学术]
LIU Yucheng, CHEN Wenbo, CHEN Yuanyuan, et al. The effect of synergistic disposal of cement kiln with added residual drilling chips on the performance of cement clinker[J]. Environmental Engineering, 2020,38(11):157-162. [百度学术]
徐亚红.页岩气油基钻屑降解固化处理及其制备免烧陶粒的技术研究[D].绵阳:西南科技大学,2018. [百度学术]
Xu Yahong. Technical research on degradation and solidification treatment of shale gas oil‑based drilling cuttings and their preparation of unburned ceramic particles[D]. Mianyang: Southwest University of Science and Technology, 2018. [百度学术]
焦艳军,罗方宇,秦丰,等.页岩气油基钻屑剩余固相建材资源化利用进展[J].油气田环境保护,2023,33(3):15-19. [百度学术]
JIAO Yanjun, LUO Fangyu, QIN Feng, et al. Progress in the resource utilization of residual solid state building materials from shale gas oil based drilling cuttings[J]. Environmental Protection of Oil and Gas Fields, 2023,33(3):15-19. [百度学术]
何焕杰,张淑侠,王爱华,等.气田深井聚磺钻井液废液复合固化处理技术研究[J].环境工程学报,2010,4(11):2489-2493. [百度学术]
HE Huanjie, ZHANG Shuxia, WANG Aihua, et al. Study on complex solidification treatment technology for polymer sulfated waste drilling fluids from gasfield’s deep wells[J]. Chinese Journal of Environmental Engineering, 2010,4(11):2489-2493. [百度学术]
张博廉,操卫平,赵继伟,等.油基钻井岩屑处理技术展望[J].当代化工,2014,43(12): 2603-2605. [百度学术]
ZHANG Bolian, CAO Weiping, ZHAO Jiwei, et al. Prospect of oil-base drilling cuttings processing technologies[J]. Contemporary Chemical Industry, 2014,43(12):2603-2605. [百度学术]
蔡浩,姚晓,华苏东,等.页岩气井油基钻屑固化处理技术[J].环境工程学报,2017,11(5):3120-3127. [百度学术]
CAI Hao, YAO Xiao, HUA Sudong, et al. Solidification treatment technology of oil-based drilling cuttings in shale gas well[J]. Chinese Journal of Environmental Engineering, 2017,11(5):3120-3127. [百度学术]
Falciglia P P, Romano S, Vagliasindi F G A. Stabilisation/solidification of 137Cs-contaminated soils using novel high-density grouts: γ-ray shielding properties, contaminant immobilisation and a γRS index-based approach for in situ applicability[J]. Chemosphere Oxford, 2017,168:1257-1266. [百度学术]
Paria S, Yuet P K. Solidification/stabilization of organic and inorganic contaminants using portland cement: a literature review[J]. Environmental Reviews, 2006,14(44):217-255. [百度学术]
Shah S J, Shroff A V, Patel J V, et al. Stabilization of fuel oil contaminated soil-A case study[J]. Geotechnical and Geological Engineering, 2003,21(4):415-427. [百度学术]
Kogbara R B, Al-Tabbaa A, Iyengar S R. Utilisation of magnesium phosphate cements to facilitate biodegradation within a stabilised/solidified contaminated soil[J]. Water Air and Soil Pollution, 2011,216(1):411-427. [百度学术]
Benhelal E, Zahedi G, Shamsaei E, et al. Global strategies and potentials to curb CO2 emissions in cement industry[J]. Journal of Cleaner Production, 2013,51(1):142-161. [百度学术]