4/6/2025, 2:21:36 PM 星期日
Application of logging lithology identification based on support vector machines in unconsolidated sediment investigation
CSTR:
Author:
Affiliation:

Beijing Institute of Exploration Engineering, Beijing 100083, China

Clc Number:

P634;TP18

  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The accuracy of sedimentary facies and facies interface identification is not high due to the complex grain size composition and low core recovery in sandy sediment. In this paper, a lithology identification model based on the support vector machine (SVM) is established based on core and logging data, and the influence of the training set size on the identification accuracy of the model is analyzed and compared with the BP neural network model. The results show that the SVM model has high accuracy of lithology identification and low demand for training samples, which can effectively make up for the insufficient core recovery and reduce the drilling cost. It is feasible to use the logging lithology identification model based on SVM to identify the sedimentary sequence automatically in unconsolidated sediment investigation, which is a beneficial attempt to implement green exploration.

    Reference
    [1] 岳永东,谭春亮,宋殿兰,等.基于绿色勘查的浅钻技术在浅覆盖区填图中的应用研究[J].探矿工程(岩土钻掘工程),2018,45(12):5-11.YUE Yongdong, TAN Chunliang, SONG Dianlan, et al. Application of shallow drilling technology based on green exploration to geological mapping in thin overburden[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(12):5-11.
    [2] 潘懋,徐建红.埋藏第四系的沉积相研究──地球物理测井解释在第四纪沉积研究中的应用[J].第四纪研究,1993,13(3):240-249.PAN Mao, XU Jianhong. Facies study for buried Quaternary strata: Application of geophysical logging interpretation in Quaternary research[J]. Quaternary Sciences, 1993,13(3):240-249.
    [3] 余继峰,李增学.测井数据小波变换及其地质意义[J].中国矿业大学学报,2003(3):336-339.YU Jifeng, LI Zengxue. Wavelet transform of logging data and its geological significance[J]. Journal of China University of Mining & Technology, 2003(3):336-339.
    [4] 付光明,严加永,张昆,等.岩性识别技术现状与进展[J].地球物理学进展,2017,32(1):26-40.FU Guangming, YAN Jiayong, ZHANG Kun, et al. Current status and progress of lithology identification technology[J]. Progress in Geophysics, 2017,32(1):26-40.
    [5] 肖波,韩学辉,周开金,等.测井曲线自动分层方法回顾与展望[J].地球物理学进展,2010,25(5):1802-1810.XIAO Bo, HAN Xuehui, ZHOU Kaijin, et al. A review and outlook of automatic zonation methods of well log[J]. Progress in Geophysics, 2010,25(5):1802-1810.
    [6] 李政宏,刘永福,张立强,等.数据挖掘方法在测井岩性识别中的应用[J].断块油气田,2019,26(6):713-718.LI Zhenghong, LIU Yongfu, ZHANG Liqiang, et al. Application of data mining method in lithology identification using well log[J]. Fault-Block Oil and Gas Field, 2019,26(6):713-718.
    [7] 张洪,邹乐君,沈晓华.BP神经网络在测井岩性识别中的应用[J].地质与勘探,2002,38(6):63-65.ZHANG Hong, ZOU Lejun, SHEN Xiaohua. The application of BP neural network in well lithology identification[J]. Geology and Exploration, 2002,38(6):63-65.
    [8] 赵建,高福红.测井资料交会图法在火山岩岩性识别中的应用[J].世界地质,2003,22(2):136-140.ZHAO Jian, GAO Fuhong. Application of crossplots based on well log data in identifying volcanic lithology[J]. Global Geology, 2003,22(2):136-140.
    [9] 张占松,张超谟.测井资料沉积相分析在砂砾岩体中的应用[J].石油天然气学报,2007,29(4):91-93.ZHANG Zhansong, ZHANG Chaomo. Application of logging data and sedimentary facies analysis to the glutenites[J]. Journal of Oil and Gas Technology, 2007,29(4):91-93.
    [10] 王祝文,刘菁华,任莉.基于K均值动态聚类分析的地球物理测井岩性分类方法[J].东华理工大学学报(自然科学版), 2009,32(2):152-156.WANG Zhuwen, LIU Jinghua, REN Li. The method for lithology classification in geophysical well logging based on the K-means dynamic clustering analysis[J]. Journal of East China Institute of Technology (Natural Science Edition), 2009,32(2):152-156.
    [11] 张平,潘保芝,张莹,等.自组织神经网络在火成岩岩性识别中的应用[J].石油物探,2009,48(1):53-56.ZHANG Ping, PAN Baozhi, ZHANG Ying, et al. Application of self-organization maps network in identifying the lithology of igneous rock[J]. Geophysical Prospecting for Petroleum, 2009,48(1):53-56.
    [12] 陈钢花,王军,程探探,等.粒子群算法在砂砾岩体岩性识别中的应用[J].测井技术,2015,39(2):171-174.CHEN Ganghua, WANG Jun, CHENG Tantan, et al. Application of particle swarm optimization to glutenite lithology identification[J]. Well Logging Technology, 2015,39(2):171-174.
    [13] 史清江,王延江,孙正义,等.小波变换和沃尔什变换在测井曲线分层中的联合应用[J].中国石油大学学报(自然科学版),2006,30(2):138-142.SHI Qingjiang, WANG Yanjiang, SUN Zhengyi, et al. Joint application of wavelet transform and walsh transform for automatic segmentation of well logs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2006,30(2):138-142.
    [14] 邓呈祥,高文利,潘和平,等.庐枞矿集区科学钻探的岩性识别方法[J].物探与化探,2015,39(6):1144-1149.DENG Chengxiang, GAO Wenli, PAN Heping, et al. Lithologic identification method in scientific drilling of the Luzong ore district[J]. Geophysical and Geochemical Exploration, 2015,39(6):1144-1149.
    [15] 张昭杰,方石.基于遗传算法优化的支持向量机在岩性识别中的应用[J].世界地质,2019,38(2):486-491.ZHANG Zhaojie, FANG Shi. Application of support vector machine in lithology identification based on genetic algorithm optimization[J]. Global Geology, 2019,38(2):486-491.
    [16] 牟丹,王祝文,黄玉龙,等.基于最小二乘支持向量机测井识别火山岩类型:以辽河盆地中基性火山岩为例[J].吉林大学学报(地球科学版),2015,45(2):639-648.MOU Dan, WANG Zhuwen, HUANG Yulong, et al. Application of least squares support vector machine to lithology identification: Taking intermediate/basaltic rocks of Liaohe Basin as an example[J]. Journal of Jilin University (Earth Science Edition), 2015,45(2):639-648.
    [17] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995,20(3):273-297.
    [18] 张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.ZHANG Xuegong. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000,26(1):32-42.
    [19] 李航.统计学习方法[M].北京:清华大学出版社,2012.LI Hang. Statistical learning method[M]. Beijing: Tsinghua University Press, 2012.
    [20] 丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10.DING Shifei, QI Bingjuan, TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011,40(1):2-10.
    [21] 袁颖,于少将,王晨晖,等.基于网格搜索法优化支持向量机的围岩稳定性分类模型[J].地质与勘探,2019,55(2):608-613.YUAN Ying, YU Shaojiang, WANG Chenhui, et al. Evaluation model for surrounding rock stability based on support vector machine optimized by grid search method[J]. Geology and Exploration, 2019,55(2):608-613.
    [22] 张岳敏,周亚利,黄春长,等.浑善达克沙地新生代以来古气候环境变迁[J].第四纪研究,2018,38(5):1068-1082.ZHANG Yuemin, ZHOU Yali, HUANG Chunchang, et al. Palaeoclimate change of Qtindag sandy land since Cenozoic[J]. Quaternary Sciences, 2018,38(5):1068-1082.
    [23] Chih-Chung, Chang, Chih-Jen. LIBSVM: A library for support vector machines[J]. Acm Transactions on Intelligent Systems & Technology, 2011.
    [24] 谭春亮,宋殿兰,岳永东,等.钻探-物探测井技术在覆盖区填图中的应用研究[J].探矿工程(岩土钻掘工程),2018,45(7):44-47.TAN Chunliang, SONG Dianlan, YUE Yongdong, et al. Application research on drilling-geophysical logging for geological mapping of overburden area[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(7):44-47.
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 30,2020
  • Revised:January 29,2021
  • Adopted:January 30,2021
  • Online: April 10,2021
  • Published: April 10,2021
Article QR Code