4/4/2025, 3:21:57 PM 星期五
Research progress on water-rock interaction during long-term mining of hot dry rock
CSTR:
Author:
Affiliation:

1.Engineering Research Center of Geothermal Resources Development Technology and Equipment,Ministry of Education, Jilin University, Changchun Jilin 130026, China;2.Engineering Research Center of Geothermal Resources Exploitation Technology and Equipment,Ministry of Education, Changchun Jilin 130026, China

Clc Number:

TE37

  • Article
  • | |
  • Metrics
  • |
  • Reference [40]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Hot dry rock resource is a kind of renewable clean energy with huge reserves. Abundant hot dry rock resource reserves exist in China, efficient and stable exploitation of hot dry rock is one of the important ways to achieve the strategic goal of “double carbon”. The development of hot dry rock is mainly accomplished through enhanced geothermal systems. When developed, the hot dry rock is exposed to water environment with high temperature and high pressure for a long time. In this process, different minerals in the rock will dissolve/deposit, causing problems such as crack blockage or pipe scaling. At the same time, in the process of contact heat transfer between water and hot dry rock, the water-rock interaction also has an impact on the mechanical properties of rock, inducing the formation of micro-pores and the expansion of cracks, aggravating the damage degree of rock and decreasing the mechanical properties of rock. In this paper, the problems caused by water-rock interaction under high temperature and high pressure conditions in the development of hot dry rock are analyzed, the current experimental methods and numerical simulation methods of water-rock interaction are summarized, and the mechanism of water-rock interaction is described. Finally, the research direction of water-rock interaction in the development of hot dry rock in the future is discussed, which provides some theoretical reference for the long periodical, efficient and safe development of hot dry rock in the future.

    Reference
    [1] 推进“十四五”规划落实着力构建新发展格局——全国政协十三届常委会第十七次会议大会发言摘编[J].中国政协,2021,387(12):10-7.
    [2] 国务院关于印发2030年前碳达峰行动方案的通知[J].建筑节能(中英文),2021,49(11):131-136.
    [3] 李德威,王焰新.干热岩地热能研究与开发的若干重大问题[J].地球科学:中国地质大学学报,2015,11:1858-1869.
    [4] 余毅,马艺媛.中国干热岩资源赋存类型与开发利用[J].自然资源情报,2022,(5):7.
    [5] 王贵玲,刘彦广,朱喜,等.中国地热资源现状及发展趋势[J].地学前缘,2020,27(1):1-9.
    [6] Allan J, Raymond F, Raymond,L. An evaluation of enhanced geothermal systems technology[R]. 2008.
    [7] Fallah A H, Gu Q, Chen D, et al. Globally scalable geothermal energy production through managed pressure operation control of deep closed-loop well systems-ScienceDirec[J]. Energy Conversion and Management, 2021,236(0):114056.
    [8] 唐春安,赵坚,王思敬.基于开挖技术的增强型地热系统EGS-E概念模型[J].地热能,2021,(5):3.
    [9] 亢方超,唐春安,李迎春,等.增强地热系统研究现状:挑战与机遇[J].工程科学学报,2022,44(10):1767-77.
    [10] Breede K, Dzebisashvili K, Liu X, et al. A systematic review of enhanced (or engineered) geothermal systems: past, present and future[J]. Geothermal Energy, 2013,1(1):4.
    [11] 汤连生,王思敬.工程地质地球化学的发展前景及研究内容和思维方法[J].大自然探索,1999,(2):35-9,44.
    [12] 赵宇辉,冯波,张国斌,等.花岗岩型干热岩体与不同注入水体相互作用研究[J].地热能,2021,94(7):2115-2123.
    [13] Kaieda H, Asanuma H. Present status of worldwide development of hot dry rock geothermal energy[J]. Journal of the Japan Institute of Energy, 2008,87(10):834-839.
    [14] 李佳琦,魏铭聪,冯波,等.EGS地热能开发过程中水岩作用对热储层特征的影响[J].可再生能源,2014,32(7):1004-1010.
    [15] 吴阳春.热冲击作用下干热岩井筒围岩力学特性与稳定控制机理研究 [D].太原理工大学,2020.
    [16] Andre L, Rabemanana V, Vuataz F D. Influence of water–rock interactions on fracture permeability of the deep reservoir at Soultz-sous-Forêts, France[J]. Geothermics, 2006,35(5-6):507-531.
    [17] Alt-epping P, Diamond L W, Hä, et al. Prediction of water–rock interaction and porosity evolution in a granitoid-hosted enhanced geothermal system, using constraints from the 5km Basel-1 well[J]. Applied Geochemistry, 2013,38(1):121-133.
    [18] Xu T, Pruess K. Reactive transport modeling to study fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid[A]. Proceedings World Geothermal Congress 2010[C], 2010.
    [19] 李义曼,庞忠和.地热系统碳酸钙垢形成原因及定量化评价[J].新能源进展,2018,6(4):274-281.
    [20] Segnit E R, Holland H D, Biscardi C J. The solubility of calcite in aqueous solutions-I The solubility of calcite in water between 75° and 200° at CO2 pressures up to 60 atm[J]. Geochimica et Cosmochimica Acta, 1962,26(12):1301-1331.
    [21] Gledhill D K, Morse J W. Calcite solubility in Na-Ca-Mg-Cl brines[J]. Chemical Geology, 2006,233(3-4):249-56.
    [22] Henley R W. Geothermal fluids: Chemistry and exploration techniques: K. Nicholson. Springer Verlag, Berlin, New York, 1993, 263 pp., DM 138.00 [J]. Journal of Geochemical Exploration, 1995,52(3):382-383.
    [23] Wanner C, Eichinger F, Jahrfeld T, et al. Causes of abundant calcite scaling in geothermal wells in the Bavarian Molasse Basin, Southern Germany[J]. 2017,70(1):324-338.
    [24] 刘业科.水岩作用下深部岩体的损伤演化与流变特性研究[D].中南大学,2014,32(5):9.
    [25] Rebinder P A, Shreiner L A, Zhigach K F. Hardness reducers in drilling: A physico-chemical method of facilitating the mechanical destruction of rocks during drilling[J]. Doklady Akademiinauk SSSR, 1948,37(17):378-392.
    [26] Sausse J, Jacquot E, Fritz B, et al. Evolution of crack permeability during fluid-rock interaction. Example of the Brézouard granite (Vosges, France)[J]. Tectonophysics, 2001,336(1-4):199-214.
    [27] 张文达.花岗岩高温酸性环境水-岩作用特征及岩体劣化机制[D].西南交通大学,2021.
    [28] 邓华锋,肖志勇,李建林,等.水岩作用下损伤砂岩强度劣化规律试验研究[J].岩石力学与工程学报,2015(S1):2690-2698.
    [29] 冯夏庭.岩石破裂过程的化学-应力耦合效应[M].北京:科学出版社,2010.
    [30] 郤保平,赵阳升.600℃内高温状态花岗岩遇水冷却后力学特性试验研究[J].岩石力学与工程学报,2010,29(5):7.
    [31] 顾晓伟.基于干热岩开采的高温水冷循环后花岗岩力学特性研究[D].徐州:中国矿业大学,2021.
    [32] Baldermann A, Abbasov O R, Bayramova A, et al. New insights into fluid-rock interaction mechanisms at mud volcanoes: Implications for fluid origin and mud provenance at Bahar and Zenbil (Azerbaijan)[J]. Chemical Geology,2020,(537): 119479.
    [33] Ellis A J, Mahon W. Natural hydrothermal systems and experimental hot-water/rock interactions [J]. Geochimica et Cosmochimica Acta, 1964,28(8):1323-1357.
    [34] Bjorke J K, Stefansson A, Arnorsson S. Surface water chemistry at Torfajkull, Iceland—Quantification of boiling, mixing, oxidation and water-rock interaction and reconstruction of reservoir fluid composition[J]. Geothermics, 2015,58(1):75-86.
    [35] Yang F, Wang G, Hu D, et al. Influence of water-rock interaction on permeability and heat conductivity of granite under high temperature and pressure conditions[J]. Geothermics, 2022,100:102347-.
    [36] 张荣华,张雪彤,胡书敏,等.高温下玄武岩与流体相互作用:在400℃、23MPa条件下反应的动力学实验[C]//2011年全国岩石学与地球动力学研讨会,2011.
    [37] 李义曼,庞忠和.二氧化碳地质封存中的水-岩反应动力学模拟:进展及问题[J].吉林大学学报(地球科学版),2012,42(S2):352-360.
    [38] 王周锋,郝瑞娟,杨红斌,等.水岩相互作用的研究进展[J].水资源与水工程学报,2015,(3):7.
    [39] 杨国栋,李义连,马鑫,等.绿泥石对CO2-水-岩石相互作用的影响[J].地球科学:中国地质大学学报,2014,(4):11.
    [40] 贾文飞,高柏,李鸣晓,等.水岩相互作用分析方法研究进展 [J].广东化工,2015,42(9):2.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:192
  • PDF: 499
  • HTML: 100
  • Cited by: 0
History
  • Received:May 31,2023
  • Revised:July 12,2023
  • Adopted:July 13,2023
  • Online: October 21,2023
Article QR Code