4/6/2025, 12:50:16 AM 星期日
Study on uniaxial mechanical properties and constitutive model of Dengying Formation dolomite after high temperature
Author:
Affiliation:

1.SINOPEC Research Institute of Petroleum Engineering Co., Ltd., Beijing102206, China;2.SINOPEC Key Laboratory of Ultra Deep Well Drilling Engineering Technology, Beijing102206, China;3.Dezhou United Petroleum Technology Corp., DezhouShandong253073, China;4.The Natural Gas Production and Sales Plant of Zhongyuan Oilfield Company, Puyang Henan 457000, China

Clc Number:

TE21;P634.1

  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Dengying Formation stratum has become an important stratum for Sinopec to increase natural gas storage and production in Sichuan Basin and improve national energy security. Due to unclear understanding of the mechanical properties of dolomite in the ultra-deep high-temperature Dengying Formation, it often leads to instability of the dolomite wellbore. By conducting uniaxial compressive strength experiments of dolomite at 25℃ (room temperature), 100℃, 150℃, 180℃, 200℃, and 220℃, the uniaxial mechanical strength and deformation characteristics of dolomite were revealed. The dolomite in the Dengying Formation will exhibit significant brittleness enhancement with increasing temperature within a certain temperature range (100~220℃), which is believed to be the reason why the peak strength of the dolomite in the Dengying Formation decreases with increasing temperature. Based on the strain Equivalence principle, the damage deformation constitutive model of dolomite in Dengying Formation after high temperature is established. The comparative study shows that:(1)The stress-strain curve drawn by the constitutive model is in good agreement with the experimental curve, and the model can fully reflect the damage process of dolomite in Dengying Formation at different temperatures; (2)This model can accurately characterize the strength and deformation parameters of dolomite at different temperatures, providing a more scientific and rigorous model for wellbore stability analysis, and improving the geological understanding of ultra-deep to ultra-deep complex formations in key areas and the ability to prevent and control complex faults during drilling and completion.

    Reference
    [1] 王江珊.川中地区深层古压力演化及温压耦合关系分析[D].北京:中国石油大学(北京),2019.WANG Jiangshan. Analysis of deep paleopressure evolution and temperature pressure coupling relationship in the Central Sichuan Region[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [2] 郭旭升,胡东风,黄仁春,等.四川盆地深层—超深层天然气勘探进展与展望[J].天然气工业,2020,40(5):1-14.GUO Xusheng, HU Dongfeng, HUANG Renchun, et al. Deep and ultra-deep natural gas exploration in the Sichuan Basin: Progress and prospect[J]. Natural Gas Industry, 2020,40(5):1-14.
    [3] 曾义金.中国石化深层超深层油气井固井技术新进展与发展建议[J].石油钻探技术,2023,51(4):66-73.ZENG Yijin. Novel Advancements and development suggestions of cementing technologies for deep and ultra-deep wells of Sinopec[J]. Petroleum Drilling Techniques, 2023,51(4):66-73.
    [4] 陈思齐.川中震旦系灯影组地层井壁稳定技术研究[D].成都:西南石油大学,2019.CHEN Siqi. Study on the wellbore stability technology of Sinian Dengying Fm in Chuanzhong area[D]. Chengdu: Southwest Petroleum University, 2019.
    [5] 叶金龙,沈建文,吴玉君,等.川深1井超深井钻井提速关键技术[J].石油钻探技术,2019,47(3):121-126.YE Jinlong, SHEN Jianwen, WU Yujun, et al. Key techniques of drilling penetration rate improvement in ultra-deep Well Chuanshen-1[J]. Petroleum Drilling Techniques, 2019,47(3): 121-126.
    [6] 郭印同,陈军海,杨春和,等.川东北深井剖面碳酸盐岩力学参数分布特征研究[J].岩土力学,2012(S1):161-169.GUO Yintong, CHEN Junhai, YANG Chunhe, et al. Distribution characteristics of rock mechanical parameters for deep drilling sections of carbonate rock in Northeast Sichuan[J]. Rock and Soil Mechanics, 2012(S1):161-169.
    [7] 李杰,马超,王金焕,等.水作用下页岩物理力学性质实验研究进展[J].工程地质学报,2019,27(S1):439-445.LI Jie, MA Chao, WANG Jinhuan, et al. Experimental studies on physical and mechanical properties of shale affected by water: a review[J]. Journal of Engineering Geology, 2019,27(S1):439-445.
    [8] 席境阳.基于有限元法的井底应力场随井底压差变化规律研究[J].钻探工程,2021,48(5):60-68.XI Jingyang. Study on the variation law of bottom hole stress field with bottom hole pressure difference based on finite element method[J]. Drilling Engineering, 2021,48(5):60-68
    [9] 王大勋,刘洪,韩松,等.深部岩石力学与深井钻井技术研究[J].钻采工艺,2006(3):6-10.WANG Daxun, LIU Hong, HAN Song, et al. Deep rock mechanics and deep or ultra-deep well drilling technology[J]. Drilling Production Technology, 2006(3):6-10.
    [10] 郑君,樊涛,窦斌,等.二氧化碳爆破储层改造近炮孔处岩石性质变化及温度分布规律研究[J].钻探工程,2022,49(3):13-22.ZHENG Jun, FAN Tao, DOU Bin, et al. Rock property change and temperature distribution near blasting holes in carbon dioxide blasting reservoir treatment[J]. Drilling Engineering, 2022,49(3):13-22.
    [11] 谭现锋,张强,战启帅,等.干热岩储层高温条件下岩石力学特性研究[J].钻探工程,2023,50(4):110-117.TAN Xianfeng, ZHANG Qiang, ZHAN Qishuai, et al. Study on Rock Mechanical Properties of hot-dry Rock Reservoirs under high temperature[J]. Drilling Engineering, 2023,50(4): 110-117
    [12] 田云英.川西地区钻井地质特征的测井研究[D].成都:西南石油大学,2007.TIAN Yunying. Logging study on drilling geological characteristics in the western Sichuan region[D]. Chengdu: Southwest Petroleum University, 2007.
    [13] 宋晓东.大庆深井岩石性质和可钻性研究[D].大庆:大庆石油学院,2008.SONG Xiaodong. Research on deep rock mechanics and rock drillability of daqing[D]. Daqing: Daqing Petroleum Institute, 2008.
    [14] Heard H C. Chapter 7: Transition from Brittle Fracture to Ductile Flow in Solenhofen Limestone as a function of temperature, confining pressure, and interstitial fluid pressure[J]. Mem. Geol. Soc. Amer, 1960,79:193-226.DOI:10.1130/MEM79-p193.
    [15] Shimada M. Lithosphere strength inferred from fracture strength of rocks at high confining pressures and temperatures[J]. Tectonophysics, 1993.
    [16] 周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.ZHOU Hongwei, XIE Heping, ZUO Jianping. Developments in research on mechanics behavior of rocks under the condition of high ground pressure in the depths[J]. Advances in Mechanics, 2005,35(1):91-99.
    [17] 谢和平.深部岩体力学与开采理论研究进展[J].煤炭学报,2019,44(5):1283-1305.XIE Heping. Research review of the state key research development program of China: Deep rock mechanics and min ing theory[J]. Journal of China Coal Society, 2019,44(5):1283-1305.
    [18] 徐小丽,高峰,高亚楠,等.高温后花岗岩力学性质变化及结构效应研究[J].中国矿业大学学报,2008,37(3):402-406.XU Xiaoli, GAO Feng, GAO Yanan, et al. Effect of high temperatures on the mechanical characteristics and crystal structure of granite[J]. Journal of China University of Mining Technology, 2008,37(3):402-406.
    [19] Ding Q L, Ju F, Mao X B, et al. Experimental investigation of the mechanical behavior in unloading conditions of sandstone after high-temperature treatment[J]. Rock Mechanics and Rock Engineering, 2016,49(7):2641-2653.
    [20] Liu S, Xu J. Study on dynamic characteristics of marble under impact loading and high temperature[J]. International Journal of Rock Mechanics and Mining Sciences, 2013,62:51-8.
    [21] Wei S J, Yang Y H, Su C D, et al. Experimental study of the effect of high temperature on the mechanical properties of coarse sandstone[J]. Applied Sciences, 2019,9(12):2424.
    [22] Różański A, Różańska A, Sobótka M, et al. Identification of changes in mechanical properties of sandstone subjected to high temperature: meso- and micro-scale testing and analysis[J]. Archives of Civil and Mechanical Engineering, 2021,21(1):28.
    [23] 谢晋勇,陈占清,吴疆宇.循环高温-快速冷却处理后的花岗岩力学特性及声发射响应特征[J].工程地质学报,2021,29(2):508-15.XIE Jinyong, CHEN Zhanqing, WU Jiangyu. Mechanical properties and acoustic emission response of granite after treatment of cyclic high temperature and rapid cooling[J]. Journal of Engineering Geology, 2021,29(2):508-515.
    [24] Sirdesai, Nikhil Ninad, Trilok Nath Singh, et al. Thermal alterations in the poro-mechanical characteristic of an Indian sandstone—A comparative study[J]. Engineering Geology, 2017,226:208-220.
    [25] 于鑫,李皋,陈泽,等.川西须家河组致密砂岩高温后的物理力学特征参数试验研究[J].地质力学学报,2021,27(1):1-9.YU Xin, LI Gao, CHEN Ze, et al. Experimental study on physical and mechanical characteristics of tight sandstones in the Xujiahe Formation in western Sichuan after high-temperature exposure[J]. Journal of Geomechanics, 2021,27(1):1-9.
    [26] Deng L Ch, Li X Z, Wang Y C, et al. Effect of temperature on macroscopic and microscopic properties of sandstone from Qidong coal mine[J]. Rock Mechanics and Rock Engineering, 2022,55(1):71-90.
    [27] 郑达,巨能攀.千枚岩岩石微观破裂机理与断裂特征研究[J].工程地质学报,2011,19(3):317-322.ZHENG Da, JU Nengpan. Scanning electronic microscope tests for rock micro-fracture mechanism and fracture characteristic of phyllite[J]. Journal of Engineering Geology, 2011,19(3):317-322.
    [28] Xu T, Zhou G L, Heap M J, et al. The influence of temperature on time-dependent deformation and failure in granite: a mesoscale modeling approach[J]. Rock Mechanics and Rock Engineering, 2017,50: 2345-2364.
    [29] 李邵军,匡智浩,邱士利,等.岩石脆性评价方法研究进展及适应性探讨[J].工程地质学报,2022,30(1):59-70.LI Shaojun, KUANG Zhihao, QIU Shili, et al. Review of rock brittleness evaluation methods and discussion on their adaptabilities[J]. Journal of Engineering Geology, 2022,30(1):59-70.
    [30] 马阳升.实时高温作用下岩石力学特性实验研究[D].徐州:中国矿业大学,2023.MA Yangsheng. Experimental study on rocks mechanical properties under real-time hightemperature[D]. Xuzhou: China University of Mining and Technology, 2023.
    [31] 李育.考虑宏细观缺陷的页岩损伤本构模型研究[D].西安:西安石油大学,2019.LI Yu. Study on damage constitutive model of shale considering macroscopic and mesoscopic defects[D]. Xi’an: Xi’an Shiyou University, 2019.
    [32] Duan Y T, Li X, Zheng B, et al. Cracking evolution and failure characteristics of Longmaxi shale under uniaxial compression using real-time computed tomography scanning[J]. Rock Mechanics and Rock Engineering, 2019,52:3003-3015.
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 23,2024
  • Revised:June 05,2024
  • Adopted:July 02,2024
  • Online: December 04,2024
  • Published: November 10,2024
Article QR Code