4/6/2025, 12:50:14 AM 星期日
Study on the design and hydraulic characteristics of the submarine mud lift pump
Author:
Affiliation:

1.Institute of Exploration Techniques, CAGS, LangfangHebei065000, China;2.Innovation Base for Automatic and Intelligent Drilling Equipment, Geological Society of China,LangfangHebei065000, China;3.Technology Innovation Center for Deep Exploration Drilling Equipment, China Geological Survey,LangfangHebei065000, China;4.Guangzhou Marine Geological Survey, China Geological Survey, GuangzhouGuangdong511458, China;5.Geological Exploration Institute of Shandong Zhengyuan, JinanShandong250101, China;6.Faculty of Mechanical Engineering Automation, Zhejiang Sci-tech University, HangzhouZhejiang310018, China

Clc Number:

P634

  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • | | | |
  • Comments
    Abstract:

    As the core functional unit of riserless mud recovery system, the mud lifting centrifugal pump drives the mud stored in the suction module to carry rock cuttings recirculate back to the drilling platform through the return pipeline. Previous designs of the riserless mud recovery system primarily employed disc pumps as the lifting unit, with specific structural design and theoretical analysis conducted around them.However, there has been limited research on multi-stage centrifugal pumps, which offer superior hydraulic performance. In this study, we focus on the theoretical basis and specific parameters of a multi-stage centrifugal pump,and develop a computational model using CFD-DEM coupling calculation to conduct a full-scale flow field simulation.This simulation investigates the impeller design, flow field characteristics, internal particle distribution patterns, and mud rock transport patterns within the pump.The results validate the centrifugal pump’s good particle permeability under design conditions.Furthermore, we conducted hydraulic performance tests on a centrifugal pump prototype using a mud lifting test bench. The test resultsindicate that the pump exhibits satisfactory operational working characteristics and hydraulic performance, meeting the design requirements for application in deep-sea riserless drilling operations.

    Reference
    [1] 陈浩文,于彦江,王艳丽,等.气举技术应用于深海无隔水管泥浆回收钻井工艺可行性分析[J].钻探工程,2022,49(2):9-15.CHEN Haowen, YU Yanjiang, WANG Yanli, et al. Feasibility analysis of gas lift technology for application in deep-sea riserless mud recovery drilling[J]. Drilling Engineering, 2022,49(2):9-15.
    [2] 陈浩文,刘晓林,王林清,等.无隔水管泥浆回收钻井技术控制系统功能设计[J].钻探工程,2021,48(S1):375-380.CHEN Haowen, LIU Xiaolin, WANG Linqing, et al. Functional design of the control system of riserless mud recovery drilling technology[J]. Drilling Engineering, 2021,48(S1):375-380.
    [3] 高本金,陈国明,殷志明,等.深水无隔水管钻井液回收钻井技术[J].石油钻采工艺,2009,31(2):44-47.GAO Benjin, CHEN Guoming, YIN Zhiming, et al. Deepwater riserless mud recovery drilling technology[J]. Oil Drilling Production Technology, 2009,31(2):44-47.
    [4] Cohen J H, Kleppe J, Grønås T, et al. Gulf of Mexico’s first application of riserless mud recovery for top-hole drilling—A case study[C]// Offshore Technology Conference . Houston, Texas, USA, 2010: OTC-20939-MS..
    [5] 王偲,谢文卫,张伟,等.RMR技术在海域天然气水合物钻探中的适应性分析[J].探矿工程(岩土钻掘工程),2020,47(2):17-23.WANG Cai, XIE Wenwei, ZHANG Wei, et al. Adaptability of RMR for Marine gas hydrate drilling[J]. Exploration Engineering (Rock Soil Drilling and Tunneling), 2020,47(2):17-23.
    [6] Aird P. Deepwater well planning and Design-Science Direct[M]//Deepwater Drilling, 2019:257-283.
    [7] 王江帅,李军,柳贡慧,等.基于井下分离的深水双梯度钻井参数优化[J].石油勘探与开发,2019,46(4):776-781.WANG Jiangshuai, LI Jun, LIU Gonghui, et al. Parameters optimization in deepwater dual-gradient drilling based on downhole separation[J]. Petroleum Exploration and Development, 2019,46(4):776-781.
    [8] 于洋,钱则刚,张和平,等.多列往复式压缩机轴系扭振特性研究[J].流体机械,2013,41(7):14-18.YU Yang, QIAN Zegang, ZHANG Heping, et al. Research on the crankshaft torsional vibration of multi-row reciprocating compressor[J]. Fluid Machinery, 2013,41(7):14-18.
    [9] 唐斌,刘广彬,许海平,等.大型工艺往复压缩机系统振动分析[J].中国机械工程,2014,25(7):873-877.TANG Bin, LIU Guangbin, XU Haiping, et al. Vibration analysis of large scale process reciprocating compressor system[J]. China Mechanical Engineering, 2014,25(7):873-877.
    [10] 秦如雷,于彦江,陈浩文,等.无隔水管泥浆循环举升泵选型及性能参数计算方法[J].钻探工程,2021,48(S1):381-385.QIN Rulei, YU Yanjiang, CHEN Haowen, et al. Selection and calculation of parameters of the mud lifting pump for RMR[J]. Drilling Engineering, 2021,48(S1):381-385.
    [11] 解永超,陈国明,张叶,等.叶片圆盘泵压力脉动及叶轮径向力特性分析[J].石油机械,2015(10):63-67.XIE Yongchao, CHEN Guoming, ZHANG Ye, et al. Numerical analysis on pressure fluctuation and radial force of disc pump with straight blade[J]. China Petroleum Machinery, 2015(10):63-67.
    [12] 陈永超,陈国明,周昌静,等.圆盘泵叶片结构形式对泵外特性影响分析[J].机械设计,2014,31(9):93-96.CHEN Yongchao, CHEN Guoming, ZHOU Changjing, et al. Analysis on the influence of blade structure on exterior characteristics of disc pump[J]. Journal of Machine Design, 2014,31(9):93-96.
    [13] 邹伟生,刘瑞仙,刘少军.粗颗粒海底矿石浆体提升电泵研究[J].中国机械工程,2019,30(24):2939-2944.ZOU Weisheng, LIU Ruixian, LIU Shaojun. Study on lifting motor pumps for coarse particle slurry in sea bed mining[J]. China Mechanical Engineering, 2019,30(24):2939-2944.
    [14] 邹伟生,卢勇,李哲奂.深海采矿提升泵的数值模拟分析[J].湖南大学学报(自然科学版),2013,40(6):59-63.ZOU Weisheng, LU Yong, LI Zhehuan. Numerical simulation and analyses of lift pump in deep sea mining[J]. Journal of Hunan University(Natural Sciences), 2013,40(6):59-63.
    [15] Li X, Zhang J, Tang X, et al. Study on wellbore temperature of riserless mud recovery system by CFD approach and numerical calculation[J]. Petroleum, 2020,6(2):163-169.
    [16] 黄思,杨富翔,宿向辉.运用CFD-DEM耦合模拟计算离心泵内非稳态固液两相流动[J].科技导报,2014,32(27):28-31.HUANG Si, YANG Fuxiang, SU Xianghui. Unsteady numerical simulation for solid-liquid two-phase flow in centrifugal pump by CFD-DEM coupling[J]. Science Technology Review, 2014,32(27):28-31.
    [17] Zhou M M, Wang S, Kuang S B, et al. CFD-DEM modelling of hydraulic conveying of solid particles in a vertical pipe[J]. Powder Technology, 2019,354:893-905.
    [18] 夏铖,赵睿杰,施卫东,等.基于DEM-CFD耦合的泵内颗粒流动特性研究[J].工程热物理学报,2021,42(2):357-369.XIA Cheng, ZHAO Ruijie, SHI Weidong, et al. Numerical investigation of particle induced erosion in a mixed pump by CFD-DEM coupled method[J]. Journal of Engineering Thermophysics, 2021,42(2):357-369.
    [19] 汪家琼,蒋万明,孔繁余,等.固液两相流离心泵内部流场数值模拟与磨损特性[J].农业机械学报,2013,44(11):53-60.WANG Jiaqiong, JIANG Wanming, KONG Fanyu, et al. Numerical simulation of solid-liquid two-phase turbulent flow and wear characteristics of centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013,44(11):53-60.
    [20] Zhu Z C, Xie P, Ou G F, et al. Design and experimental analyses of small-flow high-head centrifugal-vortex pump for gas-liquid two-phase mixture[J]. Chinese Journal of Chemical Engineering, 2008,16(4):528-534.
    [21] Ariely S, Khentov A. Erosion corrosion of pump impeller of cyclic cooling water system[J]. Engineering Failure Analysis, 2006,13(6):925-932.
    [22] Llewellyn R J, Yick S K, Dolman K F. Scouring erosion resistance of metallic materials used in slurry pump service[J]. Wear, 2004,256(6):592-599.
    [23] Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972,55(2):193-208.
    [24] 李昳.离心泵内部固液两相流动数值模拟与磨损特性研究[D].杭州:浙江理工大学,2014.LI Die. The research on numerical simulation and abrasion property of solid-liquid two-phase-flow centrifugal pump[D]. Hangzhou: Zhejiang Sci-tech University, 2014.
    [25] Zhang Z, Sun B J, Wang Z Y, et al. Intelligent well killing control method driven by coupling multiphase flow simulation and real-time data[J]. Journal of Petroleum Science and Engineering, 2022,213:110337.
    [26] Pagalthivarthi K V, Gupta p K, Tyagi V, et al. CFD prediction of erosion wear in centrifugal slurry pumps for dilute slurry flows[J]. The Journal of Computational Multiphase Flows, 2011,3(4):225-245.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:54
  • PDF: 1672
  • HTML: 20
  • Cited by: 0
History
  • Received:March 07,2024
  • Revised:May 28,2024
  • Adopted:May 30,2024
  • Online: December 04,2024
  • Published: November 10,2024
Article QR Code