4/2/2025, 11:13:06 PM 星期三
Comparative analysis of several formation identification methods based on parameters while drilling
Author:
Affiliation:

1.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring;(Central South University), Ministry of Education, Changsha Hunan 410083, China;2.Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Changsha Hunan 410083, China;3.School of Geosciences and Info-Physics, Central South University, Changsha Hunan 410083, China;4.Sunward Intelligent Equipment Co., Ltd., Changsha Hunan 410100, China

Clc Number:

P634

  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    Real-time recognition of formation lithology is critical for promptly adjusting drilling parameters, effectively controlling wellbore trajectory, and identifying subsurface reservoirs. Compared to traditional methods of identifying lithology, real-time recognition through monitoring parameters while drilling offers advantages such as convenience, efficiency, real-time accuracy, environmental compatibility, and energy efficiency. In this paper, around the lithology identification technology based on real-time parameters while drilling, the parameters according to different applications such as coal exploration and oil and gas reservoir exploitation are classified. Through the analysis of the current research status of drilling measurement and control technology and equipment, the technology for collecting and transmitting real-time parameters while drilling is introduced. Additionally, the characteristics and applications of machine learning algorithms, multivariate statistical analysis, grey relational analysis, and cross-plotting methods are also discussed. Through application cases, it compares and analyzes four types of lithology identification methods based on real-time parameters while drilling. Ultimately, the key technical issues in real-time lithology identification research is summarized, the deficiencies and challenges in development and engineering applications are analyzed, and the recommendations are provided.

    Reference
    [1] Beattie N C M. Monitoring-while-drilling for open-pit mining in a hard rock environment: an investigation of pattern recognition techniques applied to rock identification[D]. Canada: Queen’s University, 2009.
    [2] 姚宁平,吴敏,陈略峰,等.煤矿坑道钻进过程智能优化与控制技术[J].煤田地质与勘探,2023,51(9):1-9.
    [3] 赵彬,陈湘,高楚桥,等.基于贝叶斯优化BiGRU的碳酸盐岩储层流体性质识别[J/OL].长江大学学报(自然科学版),2024,1-14.
    [4] 蔡毅,邢岩,胡丹.敏感性分析综述[J].北京师范大学学报(自然科学版),2008,44(1):9-16.
    [5] 王婷婷,孙振轩,戴金龙,等.松辽盆地中央坳陷区储层岩性智能识别方法[J].吉林大学学报(地球科学版),2023,53(5):1611-1622.
    [6] 赵常青.PP-MWD旋转阀结构优化及信号特性研究[D].西安:西安理工大学,2018.
    [7] 韩虎.井下高速率连续波泥浆脉冲发生与传输特性研究[D].北京:中国石油大学(北京),2023.
    [8] Su Yi, Qi Xin, Liu Yang, et al. Electromagnetic measurement while drilling technology based on the carrier communication principle[J]. Petroleum Exploration and Development, 2013,40(2):242-248.
    [9] Zhang C, Dong H B, Ge J, et al. Theoretical channel model and characteristics analysis of EM-MWD in the underground coal mine[J]. IEEE Access, 2021,142644-142652.
    [10] 王延文,叶海超.随钻测控技术现状及发展趋势[J].石油钻探技术,2024,52(1):122-129.
    [11] 胡永建,黄衍福,李显义.磁耦合有缆钻杆关键技术与发展趋势[J].石油钻采工艺,2020,42(1):21-29.
    [12] Kang Z M, Ke S Z, Li X, et al. 3D FEM simulation of responses of LWD multi-mode resistivity imaging sonde[J]. Applied Geophysics, 2018,15(3-4):401-412.
    [13] 丁露阳,杨宁宁,杨全进,等.地质导向中的旋转失真与随钻自然伽马成像动态测量算法[J].石油学报,2021,42(1):95-104.
    [14] 武迪生,张帆,薛松,等.井震信息融合与成像探边测井在水平井储层构型单元识别中的应用对比[J].矿产勘查,2024,15(3):435-442.
    [15] 侯亮,杨虹,刘知鑫.2019测井技术发展动向与展望[J].世界石油工业,2019,26(6):58-63.
    [16] 赵嘉明,蔡耀泽,潘雷,等.S591大深度小口径多参数组合探管的设计[J].地质装备,2020,21(3):27-30.
    [17] 卫建清,何晓,陈浩,等.随钻四极源声波测井多模式采集测量TTI地层各向异性的研究[J].地球物理学报,2018,61(2):792-802.
    [18] 陈鸣,孙殿强,谢献辉,等.随钻声波测井技术进展及展望[J].世界石油工业,2023,30(3):32-41.
    [19] 岳中文,闫逸飞,王煦,等.基于随钻数据的岩性识别机器学习算法研究进展[J].科学技术与工程,2023,23(10):4044-4057.
    [20] 岳永东,渠洪杰,谭春亮,等.基于支持向量机的测井岩性识别在松散沉积物调查中的应用研究[J].钻探工程,2021,48(4):29-36.
    [21] 王亚飞,张占荣,刘华吉,等.基于模型融合的钻进参数识别岩石类型研究[J].钻探工程,2023,50(2):17-25.
    [22] Wang S F, Wu M M, Cai X, et al. Strength prediction and drillability identification for rock based on measurement while drilling parameters[J]. Journal of Central South University, 2023,30(12):4036-4051.
    [23] 刘鑫,王馨玥,王丹丹,等.岩石可钻性分级方法研究及展望[J].石油天然气学报,2023,45(2):101-108.
    [24] 杨杨.基于模糊聚类的地层岩性测井识别研究与配套软件研制[D].成都:西南石油大学,2015.
    [25] 段忠义,肖昆,杨亚新,等.基于集成学习的松辽盆地砂岩型铀矿地层岩性自动识别研究[J].原子能科学技术,2023,57(12):2443-2454.
    [26] Li Z J, Deng S G, Hong Y Z, et al. A novel hybrid CNN-SVM method for lithology identification in shale reservoirs based on logging measurements[J]. Journal of Applied Geophysics, 2024,223:105346.
    [27] 刘华吉,孙红林,张占荣,等.基于随钻参数的砂岩与砂质泥岩地层分界面智能识别[J].隧道建设(中英文),2023,43(S1):304-312.
    [28] 吴全德,马治中,郭珂依,等.基于机器学习的隧道围岩岩性智能识别方法[J/OL].路基工程,1-6[2024-07-17].
    [29] Panggabean D A, Arief J H, Alamsyah M N. Machine learning application to predict potential reservoir and hydrocarbon zone from incomplete well data[C]//The 45th Annual Scientific Meeting of Himpunan Ahli Geofisika Indonesia (HAGI). New York: 2020:1-7.
    [30] 杨进,张辉.地层岩性随钻识别的神经网络方法研究[J].天然气工业,2006,26(12):109-111.
    [31] 高铁红.基于遗传算法和神经网络的钻井参数估计和岩性识别的研究[D].天津:河北工业大学,2000.
    [32] 段友祥,赵云山,马存飞,等.基于多层集成学习的岩性识别方法[J].数据采集与处理,2020,35(3):572-581.
    [33] Shuvo M A I, Joy S M H. A data driven approach to assess the petrophysical parametric sensitivity for lithology identification based on ensemble learning[J]. Journal of Applied Geophysics, 2024,222:105330.
    [34] Amina C, Leila A, Doghmane M Z, et al. Lithofacies discrimination of the Ordovician unconventional gas-bearing tight sandstone reservoirs using a subtractive fuzzy clustering algorithm applied on the well log data: Illizi Basin, the Algerian Sahara[J]. Journal of African Earth Sciences, 2022,196:104732.
    [35] 谭成仟,宋子齐,吴少波.灰色关联分析在辽河小洼油田储层油气产能评价中的应用[J].测井技术,2001,25(2):119-122.
    [36] 王杰.基于钻进参数的煤岩界面识别系统研究[J].煤田地质与勘探,2023,51(9):72-80.
    [37] 张新华,田加加.松软煤层瓦斯抽采钻孔煤岩层位识别关键技术研究与应用[J].能源与环保,2023,45(9):20-25.
    [38] 刘毅,陆正元,吕晶,等.主成分分析法在泥页岩地层岩性识别中的应用[J].断块油气田,2017,24(3):360-363.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 30,2024
  • Revised:July 30,2024
  • Adopted:August 13,2024
  • Online: November 08,2024
Article QR Code