4/6/2025, 2:21:43 PM 星期日
Study on the critical flow rate of diversion well in the mining process of ionic rare earth
Author:
Affiliation:

1.Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral;Resources, Jiangxi University of Science and Technology, GanzhouJiangxi341000, China;2.Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, MNR,Jilin University, ChangchunJilin130026, China

Clc Number:

TD26;P634

  • Article
  • | |
  • Metrics
  • |
  • Reference [19]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Ionic rare earth ore is a unique mineral resource in China and rare in the world. It dominates the global supply of medium and heavy rare earth, and has the characteristics of complete distribution, many high-tech application elements and great comprehensive utilization value. However, in the process of ionic rare earth mining, the well wall is prone to collapse, resulting in slope instability. This paper analyzed the calculation model of the critical velocity of the migration volume of the ore body particles under different influence factors. The results show that the critical flow rate of the ore particles increases with the particle radius, arrangement angle and friction coefficient. Electrostatic power is affected by the concentration of immersion liquid, but it has little influence on the migration of ore body particles. In addition, the viscosity of the solution can significantly reduce the critical flow rate. This study can provide theoretical and technical support for the safty and efficient development of ionic rare earth.

    Reference
    [1] 池汝安,田君.风化壳淋积型稀土矿化工冶金[M].北京:科学出版社,2006.
    [2] Chi R, Tian J, Li Z, et al. Existing state and partitioning of rare earth on weathered ores[J] Journal of Rare Earths, 2005,23 (6):756-759.
    [3] 刘余九.中国稀土产业现状及发展的主要任务[J].中国稀土学报,2007,25(3):257-263.
    [4] 池汝安,田君,罗仙平,等.风化壳淋积型稀土矿的基础研究[J].有色金属科学与工程,2012,3(4):1-13.
    [5] Moldoveanu G A, Papangelakis V G. An overview of rare-earth recovery by ion-exchange leaching from ion-adsorption clays of various origins[J]. Mineralogical Magazine, 2016,80(1)63-76.
    [6] Yang X J,Lin A, Li X L, et al. China’s ion-adsorption rare earth resources, mining consequences and preservation[J]. Environmental Development, 2013,8(1):131-136.
    [7] 郭钟群,赵奎,金解放,等.离子型稀土开发面临的问题与绿色提取研究进展[J].化工进展,2019,38(7):3425-3433.
    [8] 李慧,徐志高,余军霞,等,风化壳淋积型稀土矿矿石性质及稀土在各粒级上的分布[J].稀土,2012,33(2):14-18.
    [9] 池汝安,刘雪梅.风化壳淋积型稀土矿开发的现状及展望[J].中国稀土学报,2019,37(2):129-140.
    [10] 郭钟群,周尖荣,徐虹,等.漫矿作用下离子型稀土强度弱化及滑坡研究进展[J].稀土,2022,43(3):9-22.
    [11] 蒋舒,路瑞利,位伟,等.原地浸矿诱发离子型稀土矿山边坡变形机制及其稳定性研究[J].武汉大学学报(工学版),2024,57(5):545-553.
    [12] 冯秀娟,王小青,张书荣,等.离子吸附型稀土原地浸矿颗粒运移与孔隙结构演变及模型构建研究现状及展望[J/OL].稀土,1-14[2024-10-14].http://kns.cnki.net/kcms/detail/15.1099.TF.20240326.0946.001.html.
    [13] 尚白红,路昌明,汤澍,等.离子型稀土采场滑坡成因与预测方法研究[J].世界有色金属,2022,(18):168-170.
    [14] 郭钟群,周尖荣,徐虹,等.浸矿作用下离子型稀土强度弱化及滑坡研究进展[J].稀土,2022,43(3):9-22.
    [15] 谢芳芳,尹升华,袁长林,等.浸矿液对离子型稀土矿孔隙影响机制研究[J].稀土,2018,39(6):48-56.
    [16] 刘浩伽,李彦龙,刘昌岭等.水合物分解区地层砂粒启动运移临界流速计算模型[J].海洋地质与第四纪地质,2017,372(5):166-172.
    [17] 张志军,刘炯天,冯莉,等.基于DLVO理论的煤泥水体系的临界硬度计算[J].中国矿业大学学报,2014,43(1):120-125.
    [18] 秦福元,刘伟,王文静,等.Zeta电位计算过程中Henry函数的优化表达式[J].光学学报,2017,37(10):328-335.
    [19] 彭浩,胡世丽,王观石,等.浸矿剂浓度对离子型稀土矿体抗剪强度参数的影响[J].稀土,2022,43(6):58-64.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:23
  • PDF: 58
  • HTML: 15
  • Cited by: 0
History
  • Received:July 31,2024
  • Revised:July 31,2024
  • Adopted:August 13,2024
  • Online: November 08,2024
Article QR Code