Research and development of cement-based temporary plugging permeable material
Author:
Affiliation:

State Key Laboratory of Geohazard Prevention and Geoenviroment Protection, Chengdu University of Technology, Chengdu Sichuan 610059, China

Clc Number:

P634.8

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the process of geothermal exploitation, considering water recharge, geothermal wells are generally arranged in broken zones or structural zones, and cement is used for plugging during the drilling process; in the end, plugging must be removed after drilling is completed so as to increase productivity. With conventional cement, plugging can only be removed by acidification in case that the permeability of the reservoir needs to be restored, and the ability to remove the plugging is poor. If temperature change in the geothermal development process can be used to prepare a degradable temporary plugging cement system, the exploration and development process of geothermal resources will be simplified, which will help reduce drilling costs and risks. In this paper, G-grade oil well cement, sand and gravel, reinforcing agents and water-soluble fibers are used to prepare temperature-sensitive, temporary plugging, and highly permeable cement-based materials. The material''s compressive strength, porosity, density, and setting time were tested to evaluate its degradation effect and basic performance. The results showed that the addition of water-soluble fiber significantly reduced the compressive strength of cement, while the reinforcing agent can slightly improve this defect. The porosity after curing in a water bath at 90°C was significantly higher than the control group, and the porosity continued to increase over time, which lays the foundation for the successful development of cement-based temporary plugging and permeable materials. Reinforcing agents and fibers will reduce the setting time of cement, while the effect of fibers in reducing the setting time is more obvious. The development of this material will simplify the exploration and development process of geothermal resources and help reduce drilling costs and risks.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 31,2021
  • Revised:May 31,2021
  • Adopted:July 09,2021
  • Online: December 06,2021
  • Published: September 01,2021