摘要
现有随钻测量系统的供电方式均有各自的适用条件,因此有必要探索新型的井下供电方式作为对现有方式的补充,或联合现有供电方式共同使用。摩擦纳米发电机源于接触起电及静电感应现象(即生活中常见的静电),具有发电机和传感器的双重功能。基于此,本文将摩擦纳米发电机原理引入地质勘探领域,提出了一种可用于井下自供电(也叫自发电)及自传感的随钻测量新方法,并以自供电式井下振动传感器的研制为例对该方法进行阐述,同时通过大量的试验验证了传感器的高信噪比及良好的发电特性,且进一步通过280 ℃范围内的高温测试表明了基于该方法具有研制超高温井下传感器及超高温井下实时发电机的优势。还指出了下一步的重点研究方向及其解决途径。
井下参数是获取井下工况及调整钻探工艺的重要依据,因此有必要随钻测量。对于井下随钻测量系统(MWD)而言,供电方式是其面临的“瓶颈”问题之一。现有MWD的主要供电方式有3
美国佐治亚理工学院Z. L. Wang院士所提出的摩擦纳米发电机理论,为解决井下发电问题带来了曙
可见,基于摩擦纳米发电机原理可研制自供电式传感器,如自供电转速传感
传感器的结构设计比较复杂,但其核心组成部件简化后可如

图1 自供电振动传感器工作原理示意
Fig.1 Schematic diagram of working principle of the self‑powered vibration sensor
如
综上可见,传感器的总体工作原理为:首先基于两摩擦层的接触产生摩擦电荷,随后利用两摩擦层的分离形成感应电动势,紧接着依靠感应电动势驱使电极层的电荷发生动态转移形成短路电流,如此反复循环便可实现传感和发电。在上述过程中,传感器的理论输出开路电压及短路电流信号分别如
原理样机加工完成后,利用室内模拟装置对传感器的测量特性进行了试验,结果如

图2 自供电振动传感器测量特征
Fig.2 Measurement characteristics of the sensor
传感器的工作原理为接触起电及静电感应,其传感过程本身也是发电过程,因此传感器也可当做发电机使用。基于此我们对传感器的发电特性进行了测试,结果如

图3 自供电振动传感器发电特征
Fig.3 Power generation characteristics of the sensor
为进一步展示传感器的传感及发电特性,我们进行了传感器的应用试验,试验结果如

图4 自供电振动传感器应用试验
Fig.4 Application tests of the sensor
为了更直观地展示传感器的发电及传感特性,我们进行了如
本文将摩擦纳米发电机引入地质勘探领域,提出了一种可用于井下自供电及自传感的随钻测量新方法。后续的试验结果显示,利用该方法所研制的振动传感器同时具有传感器和发电机的双重功能。当作为传感器使用时,可实现自供电式的振动频率测量,且输出信号具有良好的信噪比;当作为发电机使用时,其发电量与振动的频率及振幅均相关。同时进一步的试验结果显示高温反而有利于传感器的信号检测及发电,因此有望据此研制耐超高温的井下传感器及井下电源。此外,室内自传感及自供电的演示试验也表明传感器可在自供电模式下工作,非常适合用于研制井下自供电及自传感器的随钻测量系统。
然而,团队针对这一全新交叉学科领域的研究目前仍处于起步阶段,虽然前期已通过一些实践研究证实了基于摩擦纳米发电机研制自供电及自传感的井下随钻测量系统的可行性及优势,但并未进行相关的理论研究,系统性的理论及技术体系仍未建立,仍有大量的理论及实践工作需要详细展开,这也是我们下一步的重点研究方向,具体如下:
(1)测量参数种类较少。目前团队仅基于摩擦纳米发电机研制了几种自供电传感器,且测量参数的种类太少,无法满足多样化的井下随钻测量系统需求。根据目前所查阅到的最新文献资料显示,基于摩擦纳米发电机所研制的传感器还可实现角度、压力、流量、温度、压差、方向、加速度、角加速度等多种参数的测量,因此下一步将通过合理的结构设计及纳米材料的选择来研制满足不同种类测量参数需求的自供电传感器,从而拓展井下随钻测量系统的测量参数种类。
(2)发电量较低。目前所研制的自供电传感器的发电量较低,单个传感器的发电量无法满足井下随钻测量系统的实时用电需求。解决方法有3个:一是增加传感器个数,比如将本文所研制的振动传感器多个并联使用,当数目增加到一定程度时便可满足井下随钻测量用电需求,但这会增加仪器体积;二是增加能源转换种类,比如设计一种高效的井下摩擦纳米发电机可同时将孔底振动、转动、流体流动及温度等多种能量进行吸收及电能转换,从而增加发电量;三是改变纳米材料表面形貌,使得具有相同尺寸的两摩擦层的有效接触面积增加,从而增加发电量。
(3)可靠性有待进一步提高。摩擦纳米发电机涉及摩擦起电现象,但此处摩擦起电并非真正的硬摩擦,而是一种轻微接触或碰触,因此可极大地降低材料的磨损。虽然团队前期已经对可靠性进行了一定的研究及试验,但考虑到钻探对井下仪器设备的高可靠性要求,因此有必要研究进一步提高可靠性的方法。目前为提高输出特性,传感器部分采用了非金属纳米材料制作,而实际上金属材料的可靠性及耐磨特性更优,因此下一步将尝试采用纯金属的材料制作摩擦层,进而在保证传感器输出特性的同时还大幅度地提高其可靠性,以满足钻探对高可靠性的需求。
参考文献(References)
陈冬冬.井下涡轮发电技术研究[D].西安:西安石油大学,2020. [百度学术]
CHEN Dongdong. Research on underground turbine power generation technology[D]. Xi’an: Xi’an Shiyou University, 2020. [百度学术]
胡永建,李显义,黄衍福,等.基于TPS2121的井下自动供电装置设计[J].石油钻探技术,2020,48(2):76-81. [百度学术]
HU Yongjian, LI Xianyi, HUANG Yanfu, et al. Design of downhole automatic power supply device based on TPS2121[J]. Petroleum Drilling Techniques, 2020,48(2):76-81. [百度学术]
LIU Wenlin, WANG Zhao, WANG Gao, et al. Integrated charge excitation triboelectric nanogenerator[J]. Nature Communications, 2019,10(1):1-9. [百度学术]
LIU Di, YIN Xing, GUO Hengyu, et al. A constant current triboelectric nanogenerator arising from electrostatic breakdown[J]. Science Advances, 2019,5(4): eaav6437. [百度学术]
HU Jie, PU Xianjie, YANG Hongmei, et al. A flutter‑effect‑based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self‑powered wind speed sensor[J]. Nano Research, 2019,12(12):3018-3023. [百度学术]
LI Shaoxin, LIU Di, ZHAO Zhihao, et al. A fully self‑powered vibration monitoring system driven by dual‑mode triboelectric nanogenerators[J]. ACS Nano, 2020,14(2):2475-2482. [百度学术]
GARCIA Cristobal, TREDAFILOVA Irina. Real‑time diagnosis of small energy impacts using a triboelectric nanosensor[J]. Sensors and Actuators A: Physical, 2019,291:196-203. [百度学术]
CUI Xiaojing, ZHANG Hulin, CAO Shengli, et al. Tube‑based triboelectric nanogenerator for self‑powered detecting blockage and monitoring air pressure[J]. Nano Energy, 2018,52:71-77. [百度学术]
XIA Kequan, ZHU Zhiyuan, ZHANG Hongze, et al. A triboelectric nanogenerator as self‑powered temperature sensor based on PVDF and PTFE[J]. Applied Physics A, 2018,124(8):520. [百度学术]
PU Xiong, LIU Mengmeng, CHEN Xiangyu, et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing[J]. Science Advances, 2017,3(5): e1700015. [百度学术]
LIU Wenlin, WANG Zhao, WANG Gao, et al. Switched‑capacitor‑convertors based on fractal design for output power management of triboelectric nanogenerator[J]. Nature Communications, 2020,11(1):1-10. [百度学术]
LAI Yingchih, HSIAO Yungchi, WU Hsingmei, et al. Waterproof fabric‑based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self‑powered sensors[J]. Advanced Science, 2019,6(5):1801883. [百度学术]
DONG Kai, PENG Xiao, An Jie, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e‑textiles for power and sensing[J]. Nature Communications, 2020,11(1):1-11. [百度学术]
RAHMAN Mtoyabur, RANA Smsohelrana, SALAUDDIN Md, et al. A highly miniaturized freestanding kinetic‑impact⁃based non‑resonant hybridized electromagnetic‑triboelectric nanogenerator for human induced vibrations harvesting[J]. Applied Energy, 2020,279:115799. [百度学术]
XIONG Jiaqing, CUI Peng, CHEN Xiaoliang, et al. Skin‑touch‑actuated textile‑based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting[J]. Nature Communications, 2018,9(1):1-9. [百度学术]
KIM Daewon, TCHO Ilwoong, CHOI Yangkyu. Triboelectric nanogenerator based on rolling motion of beads for harvesting wind energy as active wind speed sensor[J]. Nano Energy, 2018,52:256-263. [百度学术]
WANG Yuqi, YU Xin, YIN Mengfei, et al. Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy[J]. Nano Energy, 2020:105740. [百度学术]
RAVICHANDRAN Aravindnarain, CALMES Cyril, SERRES Julienr, et al. Compact and high performance wind actuated venturi triboelectric energy harvester[J]. Nano Energy, 2019, 62:449-457. [百度学术]
XU Minyi, ZHAO Tiancong, WANG Chuan, et al. High power density tower‑like triboelectric nanogenerator for harvesting arbitrary directional water wave energy[J]. ACS Nano, 2019,13(2):1932-1939. [百度学术]
LIU Guanlin, GUO Hengyu, XU Sixing, et al. Oblate spheroidal triboelectric nanogenerator for all‑weather blue energy harvesting[J]. Advanced Energy Materials, 2019,9(26):1900801. [百度学术]
RODRIGUES C, NUNES D, CLEMENTE D, et al. Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives[J]. Energy & Environmental Science, 2020,13(9):2657-2683. [百度学术]
WU Chuan, FAN Chenxing, WEN Guojun. Self‑Powered speed sensor for turbodrills based on triboelectric nanogenerator[J]. Sensors, 2019,19(22):4889. [百度学术]
WU Chuan, HUANG He, YANG Shuo, et al. Pagoda‑shaped triboelectric nanogenerator with high reliability for harvesting vibration energy and measuring vibration frequency in downhole[J]. IEEE Sensors Journal, 2020,20(23):13999-14006. [百度学术]
FAN Chenxing, WU Chuan, WEN Guojun, et al. Development of self‑powered bubble velocity sensor for gas‑liquid two‑phase flow based on triboelectric nanogenerator[J]. Nanotechnology, 2020,32(8):085503. [百度学术]
FAN Chenxing, WU Chuan, WEN Guojun. Development of gas‑liquid two‑phase flow pattern sensor of coalbed methane based on the principle of triboelectric nanogenerator[J]. Nanotechnology, 2020,31(19):195501. [百度学术]
WANG Yu, WU Chuan, YANG Shuo. A self‑powered rotating speed sensor for downhole motor based on triboelectric nanogenerator[J]. IEEE Sensors Journal, 2020, doi: 10.1109/JSEN.2020.3030823. [百度学术]
WU Changsheng, WANG Aureliac, DING Wenbo, et al. Triboelectric nanogenerator: A foundation of the energy for the new era[J]. Advanced Energy Materials, 2019,9(1):1802906. [百度学术]