摘要
当深海固井遇到天然气水合物地层时,由于水泥浆水化放热,导致水合物的相变平衡条件发生改变,诱发水合物分解,引起二界面胶结质量下降等问题。为提高水合物地层固井质量,可向水泥浆中添加具有吸热控温作用的相变微胶囊,可有效降低固井水泥浆的水化升温。基于此,以配比石蜡为控温芯材、碳酸钙为壁材,利用自组装法制备了一种使用于深水水合物地层固井水泥浆控温微胶囊。由于固井水泥浆在达到水合物地层的过程中,外界温度环境复杂,单一相变温度的控温芯材极易失效。为扩展控温区间,选用切片石蜡与白油作为混合芯材,控温区间达到14.8~39.8 ℃。研究表明,该微胶囊表观形态良好、彼此无团聚,在热循环过程中,不易发生泄漏。与水泥浆复配后,对水泥浆流变性能无明显影响。在低掺加量时,微胶囊主要起降低水泥浆峰值温度的效果,并提升水泥石整体力学强度;高掺加量时,微胶囊既可以有效降低水泥浆峰值温度,也可以明显地延缓水泥浆放热速率。
全球天然气水合物资源丰富,被世界各国视为未来石油的战略接替能
相变材料是一种通过自身相态的变化对热能进行存储,从而对材料周围的环境温度进行调节的新型功能材
基于上述问题,本工作利用配比石蜡作为相变控温材料、碳酸钙为壁材,利用自组装法制备了一种深水水合物地层低热固井水泥浆用微胶囊,并对其相关性能进行了评价。
采用自组装工艺制备了以白油、切片石蜡混合物为芯材,碳酸钙作为壁材的相变控温微胶囊。称取5 g配比石蜡(白油∶切片石蜡=0.2∶0.8),并将配比石蜡融化成透明状。取0.25 g SDBS溶于50 mL去离子水中,搅拌溶解,加至熔融配比石蜡中,置于磁力搅拌器上,以300 r/min转速搅拌20 min,得到W/O乳液,记为体系1。向体系1中滴加70 mL溶有3.5 g/mL CaCl2的去离子水溶液,并加入质量比为1∶1的司盘-吐温表面活性剂以200 r/min的转速搅拌1 h,记为体系2。向体系2中滴加70 mL溶有3.5 g/mL Na2CO3去离子水溶液,以300 r/min的转速搅拌30 min。将得到的浑浊液过滤、洗涤、干燥,得到配比石蜡-碳酸钙微胶囊。
使用蔡司体视显微镜观察微胶囊的表观形态。使用电热鼓风恒温干燥箱对配比石蜡-碳酸钙微胶囊进行泄露试验,经20次热循环,温变区间为常温至200 ℃。使用综合热分析仪测定微胶囊的热物性能。使用水泥石抗压抗折测试机测量水泥石力学强度。
石蜡-碳酸钙微胶囊未过滤前的体视显微镜图如

图1 蔡司体式显微镜下微胶囊过滤前和洗涤干燥后
Fig.1 Microcapsule under the Zeiss microscope
before filtration and after washing and drying
微胶囊的包封率与热稳定性是微胶囊应用于实际生产的关键因素。将芯壁比为1∶2(P1)、1∶1(P2)微胶囊与配比石蜡(P3)制样(如

图2 热循环前与热循环后样品泄露情况
Fig.2 Leakage of samples before (a)
and after (b) thermal cycling
利用综合热分析仪(德国耐驰)测量石蜡-碳酸钙微胶囊的相变潜热及相变温度点。经文献调研及实验室内研究,不同相变点的烷烃有机物混合,混合物的相变区间并不是单纯的将单一物质的相变区间进行叠加,其各个单一物质的相变点相互靠近,相变区间相互交融。根据此性质,将白油与配比石蜡按一定比例配比成微胶囊相变芯材。由

图3 相变微胶囊的DSC曲线
Fig.3 DSC curve of phase change microcapsules
水泥浆配方:提粘剂(CMC)+减水剂(RC-800)+膨胀剂(SEP-1)+纳米SiO2+G级水泥+Mic;Mic芯壁比:1∶2;水灰比:0.5;养护环境:温度为20.0 ℃,空气湿度为90.0%;水泥块尺寸:40 mm×40 mm×40 mm。
使用六速旋转粘度计测试配制浆液的流变系数n。水泥浆不存在静剪切力,当施加极小的剪切力就能流动,故将水泥浆视为假塑形流体,其流变模式为幂律模式。稠度系数计算公式如下:
K=
式中:K——稠度系数,Pa·
由

图4 相变微胶囊对水泥浆流变性能的影响
Fig.4 Effect of phase change microcapsules on rheological properties of cement slurry
利用水泥浆水化热测试仪测量不同微胶囊添加量水泥浆的升温情况。如

图5 水泥浆水化放热温度-时间曲线
Fig.5 Temperature vs time curve of hydration heat release
使用抗压抗折力学测试仪对水泥试块进行抗折强度和抗压强度测试,每组试块测试3个平行试样,取测试的平均值。由

图6 水泥试件抗压强度
Fig.6 Compressive strength of cement specimens

图7 水泥试件抗折强度
Fig.7 Bending strength of cement specimens
采用自组装法制备了以配比石蜡为芯材、碳酸钙为壁材的控温微胶囊。微胶囊表观形态良好,整体呈球霰状,无团聚现象,从14.8 ℃开始相变,35.07 ℃时达到相变峰值,39.8 ℃相变结束,相变温度点较低,具有较广的相变控温区间,适用于低热水泥浆体系。该微胶囊对水泥浆流变性能无明显影响。随着微胶囊质量分数的增加,水泥试块的力学强度先增加后下降。在控温性能方面,低掺加的微胶囊的作用主要体现在对水泥浆峰值温度的控制上,而高掺加量的微胶囊既可以有效地降低水泥浆峰值温度,也可以明显延缓水泥浆水化放热速率。该微胶囊的研究为水合物地层低热固井水泥浆体系的制备提供了新的思路。
参考文献(References)
李文龙,高德利,杨进.海域含天然气水合物地层钻完井面临的挑战及展望[J].石油钻采工艺,2019(6):681-689. [百度学术]
LI Wenlong, GAO Deli, YANG Jin. Challenges and prospect of the drilling and completion technologies used for the natural gas hydrate reservoirs in sea areas[J]. Oil Drilling & Production Technology, 2019(6):681-689. [百度学术]
杜垚森,冯起赠,许本冲,等.海域天然气水合物试采研究现状及存在的问题[J].探矿工程(岩土钻掘工程),2018,45(4):6-9. [百度学术]
DU Yaosen, FENG Qizeng, XU Benchong, et al. Research status and existing problems in oceanic gas hydrate trial production[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(4):6-9. [百度学术]
李彦龙,胡高伟,刘昌龄,等.天然气水合物开采井防砂充填层砾石尺寸设计方法[J].石油勘探与开发,2017(6):961-966. [百度学术]
LI Yanlong, HU Gaowei, LIU Changling, et al. Gravel sizing method for sand control packing in hydrate production test wells[J]. Petroleum Exploration and Development, 2017(6):961-966. [百度学术]
骆汀汀.天然气水合物开采过程粉质沉积物力学特性研究[D].大连:大连理工大学,2020. [百度学术]
LUO Tingting. Study on mechanical behaviors of silty sediments during natual gas hydrate recovery[D]. Dalian: Dalian University of Technology, 2020. [百度学术]
罗宇维,肖伟,赵军.“十三五”中国海油固井技术研究进展与发展建议[J].中国海上油气,2020(5):145-151. [百度学术]
LUO Yuwei, XIAO Wei, ZHAO Jun. Research progress and development suggestions on cementing technology of CNOOC during the 13th Five-Year Plan Period[J]. China Offshore Oil and Gas, 2020(5):145-151. [百度学术]
侯林,李斌,陈思桥,等.海洋平台大排量双混浆固井双机双泵橇的设计与应用[J].机床与液压,2019(8):82-87. [百度学术]
HOU Lin, LI Bin, CHEN Siqiao, et al. Design and application of large displacement double mixture sludge cementing dual machine and dual pump sled for offshore platform[J]. Machine Tool & Hydraulic, 2019(8):82-87. [百度学术]
罗宇维,赵琥,宋茂林,等.中国海油固井技术发展现状与展望[J].石油科技论坛,2017(1):32-36. [百度学术]
LUO Yuwei, ZHAO Hu, SONG Maolin, et al. Current conditions and outlook of CNOOC cementing technological development[J]. Petroleum Science and Technology Forum, 2017(1):32-36. [百度学术]
侯林,李斌,雷彪,等.国内外深水固井设备及国产化方向[J].当代化工,2015(3):590-591,594. [百度学术]
HOU Lin, LI Bin, LEI Biao, et al. Domestic and foreign deepwater cementing equipments and its localization direction[J]. Contemporary Chemical Industry, 2015(3):590-591,594. [百度学术]
申志聪,王栋,贾永刚.水合物直井与水平井产气效果分析——以神狐海域SH2站位为例[J].海洋工程,2019,37(4):107-116. [百度学术]
SHEN Zhicong, WANG Dong, JIA Yonggang. Analysis on gas hydrate exploitation response between the horizontal and vertical wells at SH2 site in the Shenhu area of the South China Sea[J]. The Ocean Engineering, 2019,37(4):107-116. [百度学术]
光新军,王敏生.海洋天然气水合物试采关键技术[J].石油钻探技术,2016,44(5):45-51. [百度学术]
GUANG Xinjun, WANG Minsheng. Key production test technologies for offshore natural gas hydrate[J]. Petroleum Drilling Techniques, 2016,44(5):45-51. [百度学术]
Taoutaou S., Ashraf S., Takahashi U. Implementation of a fit⁃for⁃purpose cementing technology for the first gas hydrate production in Japan[C]// 2014 International Petroleum Technology Conference. Kuala Lumpur: 2014:1-15. [百度学术]
李常茂,耿瑞伦.关于天然气水合物钻探的思考[J].探矿工程,2000(3):5-8. [百度学术]
LI Changmao, GENG Ruilun. Pondering over gas hydrates exploration drilling[J]. Exploration Engineering, 2000(3):5-8. [百度学术]
Liu L P, Sun Z L, Zhang L, et al. Progress in global gas hydrate development and production as a new energy resource[J]. Acta Geologica Sinica (English Edition), 2019,93(3):731-755. [百度学术]
万义钊,吴能友,胡高伟,等.南海神狐海域天然气水合物降压开采过程中储层的稳定性[J].天然气工业,2018,38(4):117-128. [百度学术]
WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J]. Natural Gas Industry, 2018,38(4):117-128. [百度学术]
吴时国,王吉亮.南海神狐海域天然气水合物试采成功后的思考[J].科学通报,2018(1):2-8. [百度学术]
WU Shiguo, WANG Jiliang. On the China’s successful gas production test from marine gas hydrate reservoirs[J]. Chinese Science Bulletin, 2018(1):2-8. [百度学术]
阮徐可,李小森,杨明军,等.天然气水合物二次生成及渗透率变化对降压开采的影响[J].石油学报,2015(5):612-619. [百度学术]
RUAN Xuke, LI Xiaosen, YANG Mingjun, et al. Influences of gas hydrate reformation and permeability changes on depressurization recovery[J]. Acta Petrolei Sinica, 2015(5):612-619. [百度学术]
Marin-Moreno, Hector,Giustiniani, Michela,Tinivella, Umberta, et al. The challenges of quantifying the carbon stored in Arctic marine gas hydrate[J]. Marine and Petroleum Geology, 2016,71:76-82. [百度学术]
Oka Fusao, Kimoto Sayuri, Fushita Tomohiko. A chemo⁃thermo⁃mechanically coupled analysis of ground deformation induced by gas hydrate dissociation[J]. International Journal of Mechanical Sciences, 2010,52(2):365-376. [百度学术]
Tupsakhare, Swanand S, Kattekola, et al. An application of the results from the large‑scale thermal stimulation method of methane hydrate dissociation to the field tests[J]. Industrial & Engineering Chemistry Research, 2017,56(15):4588-4599. [百度学术]
刘天乐,郑少军,王韧,等.固井水泥浆侵入对近井壁水合物稳定的不利影响[J].石油学报,2018,39(8):937-946. [百度学术]
LIU Tianle, ZHENG Shaojun, WANG Ren, et al. Negative effect of cementing slurry invasion on gas hydrate stability around borehole wall[J]. Acta Petrolei Sinica, 2018,39(8):937-946. [百度学术]
Ruppel C., Jones E., Boswell R. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling: Introduction and overview[J]. Marine and Petroleum Geology, 2008,25(9):819-829. [百度学术]
Tetsuya Fujii, Kiyofumi Suzuki, Yuhei Komatsu. Sedimentary facies and paleoenvironments of a gas⁃hydrate⁃bearing sediment core in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015,66(Pt.2):358-367. [百度学术]
白玉湖,李清平,周建良,等.天然气水合物对深水钻采的潜在风险及对应性措施[J].石油钻探技术,2009,37(3):17-21. [百度学术]
BAI Yuhu, LI Qingping, ZHOU Jianliang, et al. The potential risk of gas hydrate to deepwater drilling and production and the corresponding strategy[J]. Petroleum Drilling Techniques, 2009,37(3):17-21. [百度学术]
郭辛阳,步玉环,李娟,等.井下复杂条件下固井水泥环的失效方式及其预防措施[J].天然气工业,2013,33(11):86-91. [百度学术]
GUO Xinyang, BU Yuhuan, LI Juan, et al. Modes and prevention of cement sheath failures under complex downhole conditions[J]. Natural Gas Industry, 2013,33(11):86-91. [百度学术]
Nabipour A., Joodi B., Sarmadivaleh M., et al. Finite element simulation of downhole stresses in deep gas wells cements[C]// Deep Gas Conference and Exhibition. Manama, Bahrain: 2015:577-589. [百度学术]
Hampshire Kenneth, McFadyen Mike, Ong Dominic, et al. Overcoming deepwater cementing challenges in South China Sea, East Malaysia[C]//IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, 2004:1-8. [百度学术]
宋建建,许明标,王晓亮,等.新型相变材料对低热水泥浆性能的影响[J].钻井液与完井液,2019(2):218-223. [百度学术]
SONG Jianjian, XU Mingbiao, WANG Xiaoliang, et al. The effects of a new phase change material on the properties of low heat cement slurries[J]. Drilling Fluid & Completion Fluid, 2019(2):218-223. [百度学术]
邢希金,许明标.低热水泥吸热储能材料研究[J].重庆科技学院学报(自然科学版),2016(5):100-102. [百度学术]
XING Xijin, XU Mingbiao. Study on endothermic energy⁃storage material of low thermal cemen[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2016(5):100-102. [百度学术]
王婷玉.碳酸钙包覆石蜡基相变微胶囊的调温及强化传热研究[D].广州:华南理工大学,2017. [百度学术]
WANG Tingyu. Research on microencapsulation of paraffin based core with calcium carbonate shell for temperature regulation and heat transfer enhancement[D]. Guangzhou: South China University of Technology, 2017. [百度学术]
Huang K D, Tzeng S C, Chang W C. Energy‑saving hybrid vehicle using a pneumatic‑power system[J]. Applied Energy, 2005,81(1):1-18. [百度学术]
King J. The king review of low‑carbon cars: part I: the potential for CO2 reduction[M]. 2007. [百度学术]
Fontaras G, Pistikopoulos P, Samaras Z. Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real⁃world simulation driving cycles[J]. Atmospheric Environment, 2008,42(18):4023-4035. [百度学术]
Duan X, Naterer G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010,53:5176-5182. [百度学术]
王传涛,刘松阳,韩杰,等.石蜡基相变储能墙结构设计与控温实验研究[J].硅酸盐通报,2020,39(11):3691-3696. [百度学术]
WANG Chuantao, LIU Songyang, HAN Jie, et al. Structural design and experimental study on temperature control of paraffin‑based latent thermal energy storage wall[J]. Bulletin of the Chinese Ceramic Society, 2020,39(11):3691-3696. [百度学术]
Karthick A, Murugavel K. performance enhancement of a building integrated photovoltaic module using phase change material[J]. Energy, 2018,142:803-812. [百度学术]