摘要
密闭取心是一种特殊取心作业,通过密闭取心钻具与密闭取心钻头配合,在密闭液作用下实现岩心与钻井液隔离,可获得地层原始含油饱和度及油水动态等数据。密闭钻头设计为双流道结构,要满足钻井液过流冲洗冷却钻头唇面、携带岩屑要求,同时密闭液在井底可形成富集区域,有效保护岩心免受钻井液污染,密闭取心钻头流道参数是密闭取心钻头设计的关键。本文运用计算流体力学理论,采用k‑epsilon湍流模型及连续性方程对KM型密闭取心钻具配套密闭取心孕镶金刚石钻头的两相流井底流场进行数值模拟,研究钻头唇面两相流混流状态、流体压力、流速、剪切应力分布特征等,分析了流场特征对钻头密闭效果、钻进效率和寿命等的影响,验证了密闭取心孕镶胎块式金刚石钻头流道结构设计参数,提出了钻头两相流流道优化设计建议。
常规取心钻进泥浆通过钻头水眼循环,进入钻头的岩心会直接接触泥浆,受到泥浆中滤液和部分固相组分的污染,使获取的目的地层岩心含油饱和度和地层孔隙度等重要数据失
以KM216型密闭取心钻具配套Ø215.9 mm/Ø124 mm钻头作为研究模型,该钻头为8个U形胎块式均布圆弧形底唇面,密闭液过流水口为8个直径16 mm的圆形水口,与钻井液的过流水口间隔式排

图1 密闭取心钻头三维结构
Fig.1 3D structure of the sealed coring bit

图2 密闭取心钻头三维建模
Fig.2 3D modeling of sealed coring bit
利用三维建模软件构建钻头井底工作时的3D模型计算域,钻头底唇面与井底间距设为0.01 mm,钻头内壁面与岩心环隙间距设为1 mm,钻头外壁面与井壁间距设为2 mm,模型计算域如

图3 密闭取心钻头井底工作的3D模型计算域
Fig.3 Calculation domain of 3D model for bottom hole operation of the sealed coring bit

图4 模型计算域剖视图
Fig.4 Section view of the model calculation domain
利用计算流体力学(CFD)分析软件采用四面体网格对计算域进行划分并模拟分析,为简化模拟计算过程,忽略对井底两相流流场影响较小的次要因素,对边界条件作出以下假
(1)假设井底为平面,井壁为规则的圆柱面,钻头正常钻进时与井底为平面接触;
(2)忽略两相流流体重力影响因素;
(3)不考虑岩屑对两相流体的影响。
采用某体系钻井液和某合成基密闭液进行模
假设钻井液和密闭液进行不可压缩三维非定常湍流流动,建立井底两相流流场的三维湍流物理模型,根据流体动力学基础理论,则流体的连续性方程为:
(1) |
因钻井液和密闭液两相流介质的流动处于稳态,则
式中:——矢量速度;、、——矢量速度在x、y、z轴上的分量;密度;时间。
钻井液与密闭液的流动系统遵守动量守恒定律,因此x、y、z三个方向的微分动量守恒方程为:
(2) |
(3) |
(4) |
式中:——流体微元体上的压力;、、——动量方程广义源项分量;——动力粘度。
但对于湍流,如果直接求解三维瞬态N-S方程(2),求解难度较大,工程中广为采用的方法是对瞬态N-S方程做时间平均处理,同时补充反映湍流特性的湍流模型方程,即采用标准的湍流k-模型控制方程。
(5) |
(6) |
式中:——湍动能;ε——湍流耗散率;;。
密闭取心钻头为双流道结构,内部装配双卡簧和模拟岩心,既存在圆环形内腔,又有带一定角度的斜过流孔和不规则变截面的环形缝隙,两相流体在钻头底唇面交汇混流形成的流场分布是钻头密闭效果分析的关键。因此,合理的网格划分是提高流场计算准确度的重要前

图5 网格划分效果图
Fig.5 Meshing effect
流体仿真CFD软件模拟输出的钻头两相流标量混合流场云图如

图6 密闭取心钻头两相流混流状态云图
Fig.6 Cloud chart of the two phase flow in the mixed flow state of the sealed coring bit

图7 钻头底唇面密闭液与钻井液流场及流迹线
Fig.7 Flow field and trace of the sealing fluid and drilling fluid on the drill bit bottom lip
密闭钻头两相混合流流速云图如

图8 密闭取心钻头钻井液流速云图
Fig.8 Nephogram of the drilling fluid velocity of the sealed coring bit
密闭钻头两相混合流压力云图如

图9 密闭取心钻头流场压力梯度分布
Fig.9 Pressure gradient distribution in the flow field of the sealed coring bit
钻井液与密闭液的两相流介质流速与绝对剪切应力存在一定的比例关系,流体剪力与流体的冲刷效应存在正相关作

图10 密闭取心钻头流体剪切应力分布
Fig.10 Fluid shear stress distribution of the sealed coring bit

图11 钻头底唇面剪切应力等值云图
Fig.11 Contour nephogram of shear stress on the bit bottom lip
(1)通过标量混合方式对密闭金刚石取心钻头密闭液和钻井液两相流流场进行CFD模拟,密闭液与钻井液两相流在钻头底唇面流场分布特征满足密闭取心要求,理论上密闭液可有效隔离钻井液,形成良好的岩心密闭效果,钻头两相流流道及水口结构设计基本合理。
(2)密闭钻头底唇面钻井液与密闭液混流环形区域径向压力梯度小,流体介质流速慢,有利于密闭液形成富集区域密闭岩心,但会影响钻井液在该区域的冲洗冷却效果,长时间钻进中钻头胎体可能会出现局部微小的热损消耗现象。
(3)密闭取心钻头钻井液流道斜角度出水口附近介质流速快,冲刷剪切应力集中,长时间钻进水口附近存在冲刷损耗风险,进而会影响金刚石钻头孕镶热压胎体块二次镶焊强度,因此钻头胎体块水口附近的二次焊接区域应提高焊接精度和强度。
(4)密闭钻头两相流流场模拟得出的结果为后续密闭取心钻头入井试验和进一步性能优化提供了理论依据和方向指导,通过后续的实钻试验与数据反馈,完善模拟边界条件,优化改进钻井液流道倾斜角度和弧形唇面水口参数,减少钻井液冲洗冷却不充分和剪切冲刷应力集中区域,保证岩心密闭率前提下达到提高钻头钻进效率和使用寿命的效果。
参考文献(References)
易贵华,易明,谢勇,等.密闭取心技术[J].新疆石油天然气,2008,4(4):46-50. [百度学术]
YI Guihua, YI Ming, XIE Yong, et al. Sealing coring technology [J]. Xinjiang Oil & Gas, 2008,4(4):46-50. [百度学术]
李开荣,薄万顺.密闭取心技术的新发展[J].石油钻采工艺,1998,20(2):36-38. [百度学术]
LI Kairong, BO Wanshun. Advances in sealed coring technology[J]. Oil Drilling & Production Technology, 1998,20(2):36-38. [百度学术]
田绍臣,邵建中,沈万清,等.濮检4井密闭取心钻井技术[J].石油钻探技术,2003,31(2):17-19. [百度学术]
TIAN Shaochen, SHAO Jianzhong, SHEN Wanqing, et al. Sealing core drilling technique in Pujian 4 well[J]. Petroleum Drilling Techniques, 2003,31(2):17-19. [百度学术]
李让,吕跃滨,杨晨涛,等.自锁式深井密闭取心工具的研制与应用[J].石油矿场机械,2012,41(4):57-60. [百度学术]
LI Rang, LÜ Yuebin, YANG Chentao, et al. Development and application of self‑locking sealed coring tool for deepwell[J]. Oil Field Equipment, 2012,41(4):57-60. [百度学术]
张恒春,王稳石,李宽,等.KT178型取心钻具在共和干热岩钻井中的应用[J].钻探工程,2021,48(2):29-34. [百度学术]
ZHANG Hengchun, WANG Wenshi, LI Kuan, et al. Application of the KT178 core tool in Gonghe hot dry rock exploratory wells[J]. Drilling Engineering, 2021,48(2):29-34. [百度学术]
曹龙龙,朱永宜,王稳石,等.松科2井三,四开次取心钻头技术对策与应用效果[C]//第十九届全国探矿工程(岩土钻掘工程)学术交流年会,2017. [百度学术]
CAO Longlong, ZHU Yongyi, WANG Wenshi, et al. Technical countermeasures and application effect of coring bits for three and four times in well Songke 2[C]//The 19th National Academic Exchange Conference on Exploration Engineering, 2017. [百度学术]
潘晓毅,秦建新,谢德龙,等.金刚石钻头井底流场CFD模拟研究[J].金刚石与磨料磨具工程,2016,36(4):34-38. [百度学术]
PAN Xiaoyi, QIN Jianxin, XIE Delong, et al. CFD simulation of diamond bit’s bottomhole flow field[J]. Diamond & Abrasives Engineering, 2016,36(4):34-38. [百度学术]
况雨春,魏莉鸿,秦超.牙轮-PDC复合钻头井底流场CFD模拟研究[J].石油机械,2013,41(6):6-9. [百度学术]
KUANG Yuchun, WEI Lihong, QIN Chao. Research on bottomhole flow field CFD simulation of composite roller‑PDC bit [J]. China Petroleum Machinery, 2013,41(6):6-9. [百度学术]
孟庆鸿,张恒春,胡郁乐,等.防泥包钻头的优化设计与应用[J].煤田地质与勘探,2011,39(1):71-73. [百度学术]
MENG Qinghong, ZHANG Hengchun, HU Yule, et al. Optimum design and application of balling‑preventing bit[J]. Coal Geology & Exploration, 2011,39(1):71-73. [百度学术]
朱永宜,王稳石,张恒春,等.我国大陆科学钻探工程实施概况及其取心钻进技术体系[J].地质学报,2018,92(10):1971-1984. [百度学术]
ZHU Yongyi, WANG Wenshi, ZHANG Hengchun, et al. Implementation overview of Chinese continental scientific drilling (CCSD) project and technical systems of core boring[J]. Acta Geologica Sinica, 2018,92(10):1971-1984. [百度学术]
于航,殷琨,罗永江,等.内喷孔式反循环钻头结构优化设计及CFD模拟分析[J].探矿工程(岩土钻掘工程),2013,40(1):49-52. [百度学术]
YU Hang, YIN Kun, LUO Yongjiang, et al. Optimal design of internal jet orifice reverse circulation bit and CFD simulation analysis[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2013,40(1):49-52. [百度学术]
乔东宇,宋朝晖,黄治中,等.高性能取心密闭液的研究与应用[J].钻井液与完井液,2010,27(5):28-30. [百度学术]
QIAO Dongyu, SONG Chaohui, HUANG Zhizhong, et al. Research and application of high performance sealed coring fluid[J]. Drilling Fluid & Completion Fluid, 2010,27(5):28-30. [百度学术]
吴迪,孙英伟.大庆油田密闭取心钻井技术及问题研究[J].中国石油和化工标准与质量,2012,32(2):114-115. [百度学术]
WU Di, SUN Yingwei. Study on sealed coring drilling technology and problems in Daqing Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2012,32(2):114-115. [百度学术]
孙磊.关于密闭取心技术空筒出现的原因探讨[J].辽宁化工,2015,44(8):947-948. [百度学术]
SUN Lei. Study on causes of empty barrel in sealing coring [J]. Liaoning Chemical Industry, 2015,44(8):947-948. [百度学术]
杨凯华,王达,张晓西.科学深钻金刚石钻头的结构与性能分析[J].探矿工程(岩土钻掘工程),2005,32(S1):30-33. [百度学术]
YANG Kaihua, WANG Da, ZHANG Xiaoxi. Analyses on structure and performance of diamond bits in scientific drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2005,32(S1):30-33. [百度学术]
Marx C, Rischmüller H. Drilling and Coring Techniques for Hard Rock[M]. Observation of the Continental Crust Through Drilling II. Springer, Berlin, Heidelberg, 1987: 149-159. [百度学术]
Rischmuller H, Chur C, Engeser B, et al. Advanced drilling technology for the continental deep drilling program(KTB): Part of International Lithosphere Research[C]//SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1991:375-382. [百度学术]
李明朝,丛海洋,鲁金峰.SLRmb-8100型取心工具的研制与应用[J].石油机械,2013,41(9):44-47. [百度学术]
LI Mingchao, CONG Haiyang, LU Jinfeng. Development and application of model SLRmb-8100 coring tool[J]. China Petroleum Machinery, 2013,41(9):44-47. [百度学术]
刘彬,周刚,陈晓彬,等.密闭取心工艺在深井中的应用[J].钻采工艺,2008,31(4):124-125. [百度学术]
LIU Bin, ZHOU Gang, CHEN Xiaobin, et al. Application of sealing coring technology in deep well[J]. Drilling & Production Technology, 2008,31(4):124-125. [百度学术]
吴金生,陈礼仪,张伟.破碎松软地层取心钻头孔底流场数值模拟及应用[J].探矿工程(岩土钻掘工程),2013,40(7):107-110. [百度学术]
WU Jinsheng, CHEN Liyi, ZHANG Wei. Numerical stimulation of bottom flow field of core bit in broken soft formation and the application[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2013,40(7):107-110. [百度学术]