摘要
固井水泥石传热性能是影响井筒热传递能力的重要因素。本文主要介绍了目前固井水泥石导热系数的主要研究手段,以及在此基础上取得的一些认识,例如外加高导热材料、水泥石微观结构和含水率与导热系数之间的关系。同时还指出了现有研究手段的统一和拓展、研究内容的系统化还有待进一步加强和改善。在分析建筑保温水泥和岩石等多孔材料研究经验的基础上,提出水泥石导热系数的研究不仅需要统一实验手段和推广使用数值模拟的方法,还要考虑水泥石养护条件、内部水分的动态变化和外加保温材料等因素对水泥石导热系数的影响。系统规范的研究手段和内容可有效提高研究的准确性、高效性和全面性,显著增加对水泥石热传导性能的认识,以期为后续的研究提供一定的借鉴。
流体在井筒内流动过程中与等深地层存在温度差,热量会以固井水泥石和套管组成的井筒为传递介质,持续在井筒内热水和地层间传递,从而影响热水出井温度和地热能利用效率。为提高热水出井温度和地热能利用效率,许多学者从提高日产水量、增强抽水管保温性能、优化抽水泵下深等方
现阶段,固井水泥石导热系数的研究内容主要集中于使用大量实验分析骨架成分、外加材料种类及加量、孔隙率和含水量、测试条件等单因素对导热系数的影
固井水泥石和套管的厚度远小于其直径,此两者组成的井筒传热系统的基本物理模型可简化为两块平板,因此,其导热系数可利用多层平壁稳定传热模型(见

图1 热量在水泥石和套管中传递示意
Fig.1 Schematic diagram of heat transfer in cement paste and casing
多层平壁稳定传热模型中,达到稳态传热时,单位时间内传递的总热量计算公
(1) |
计算可得井筒传热系统总导热系数为:
(2) |
式中:A——传热截面积,
基于应用实际,取

图2 不同水泥石导热系数下的总导热系数
Fig.2 Total thermal conductivity at different thermal conductivity of cement
由
对于热水抽采型地热井,当地层中的流体进入地热抽采井井筒后,在抽采泵的抽吸力和地层压力双重作用下流体沿套管向上流动。由于井筒内热水与等深地层间温差的存在,热量会以水泥石和套管为介质从高温热水向低温地层传递,导致热水热量损失,同时温度降
对于地热同轴型换热系统,当流体从环空注入,井筒上部热水温度高于地层温度,热水向地层传递热
固井水泥石导热系数的研究尚处于初级阶段,并无统一、规范和适合该行业的测试手段。目前,出于为科研创造便利条件的初衷,学者们在解决水泥石导热系数的测试难题时,多参考建筑水泥导热系数测试标准,并依据实际需求,利用所持设备来实现固井水泥石导热系数的测量。现阶段固井水泥石的测试方法主要为瞬态法,具体为采用瞬态平面热源法和瞬态热线法实现导热系数的测量(
地热井成井后,由井筒内流体与地层间温差作用导致的热量传递现象也会改变水泥石内水分分
水泥石组构是影响其导热系数的直接因素,包括水泥石骨架成分、外加材料、微观结构、含水量等,此外,各因素之间还会互相影
固体是热的良导体,水泥石骨架为其体积的最重要组成部分,是热量的主要传递介质,是影响固井水泥石导热系数的首要因
目前,关于水泥石骨架成
外加材料的引入是改变固井水泥石导热系数最常见的方法,也是水泥石导热系数研究最多的内容。
外加材料对固井水泥石导热系数的影响研究是在借鉴建筑水泥、岩石等多种多孔材料导热系数的研究经验上开展的,大量实验证明了高效导热材料,例如石

图3 外加材料对热量传递路径的影响
Fig.3 Effect of additives on the heat transfer path
低导热水泥(保温水泥)的保温机理与高导热水泥相反,保温材料的加入能有效延长热量在水泥石内传递路径,减小单位时间内水泥石传递的总热量,达到降低水泥石导热系数的目的(
一般而言,孔隙分布和孔隙形状决定水分和空气的细观分布、联通情况以及对流传递路径,是影响水泥石导热系数的重要因素之
MIDTTOMME
目前关于水泥石微观结构的研究仍主要集中于对其机械性能的影响,涉及水泥石传热性能的研究还相对较少,孔隙尺寸、分布、形态以及连通情况与导热系数的定性和定量关系等都需开展深入研究。
水泥石内水分(湿分)对导热系数的影响包括3个方面,即决定最大含湿量的水泥浆水灰比、水泥石含湿饱和度和湿分布,但目前研究主要集中于不同水灰比条件下导热系数的变化对比。研究发现,随着水灰比的增加,水泥石单位体积内湿分占据的体积增加,骨架体积减小,水泥石导热系数降
然而,水灰比只是决定水泥石最大含湿量的因素。水泥浆在环空中完成固结后,决定其导热系数的是水泥石内含湿饱和度和湿分布。目前,固井水泥石的绝大部分测试均为水泥石在完全干燥条件下测量,并不能真实反应水泥石在潮湿地层环境下的含湿导热系数。此外,一定含湿状态下,湿分在水泥石内分布受热量传递的影
温度是影响固井水泥石导热系数最重要的测试条件。一般情况下,不同井深处井筒内外温度绝对值和差值变化较大(

图4 成井前和热采过程中井筒内流体温度剖
Fig.4 Fluid temperature profile in the wellbore before well completion and in the pumping process
目前,针对测试温度对水泥石导热系数影响的研究已有一定基础。对于高导水泥,测试温度的升高在促进分子不规则的热运动的同时,热运动也会发生变化消耗热量,会导致水泥浆体在高温下的导热系数低于低温下的导热系
地热井固井段长度大多为2000 m以上,井筒内流体不断地与地层发生热交换,而水泥石的导热系数是决定井筒内流体热量吸收或损失总量的首要因
稳态法是在水泥石内部温度分布达到稳定后、湿分分布和热流传递达到平衡时测试穿过试样的热流来计算导热系数的测试方法。该方法能真实模拟热量流过固井水泥石后湿分布变化过程,准确测量一定含湿饱和度下固井水泥石内湿分布再次达到平衡时的真实导热系
综上,根据固井水泥石模拟测试条件需求,结合稳态法和瞬态法测试实际,得出以下认识:
(1)当测试水泥石在中低温下的导热系数时,首选稳态法,高温条件下(T>150 ℃)则需使用瞬态法。
(2)中低温条件下,测试干燥水泥导热系数时,若研究的水泥石导热系数较大,选择稳态法或瞬态法测试均可,若研究的水泥石导热系数相对较小,则选择稳态法测试较为可靠。此2种测试方法皆须统一样品尺
(3)测试一定含湿饱和度下水泥石导热系数时,选择稳态法。
在使用稳态法测试固井水泥石导热系数的过程中,需尽量参考标准《绝热材料稳态热阻及有关特性的测定 防护热板法》(GB/T 10294—2008
水泥浆在井筒中固化后,基体成分和骨架结构基本确定,此时,湿分是影响其导热系数的最关键要素,主要包括湿分布和湿传递。热量在水泥石内传递时,首先改变水泥石内温度梯度,同时近热面区域液体湿分因温度升高而发生相变,导致孔隙内水蒸气分压力和浓度升高,液相和汽相湿含量发生变化,并在湿分浓度、蒸气分压和温度梯度等驱动势作用下发生热湿传递。湿传递过程中,湿分运动路径受孔缝量、形状、温度等因素影响,但总体遵循扩散理论、毛细流动理论和蒸发冷凝理论

图5 热流通过前后水泥石内湿分布
Fig.5 Moisture distribution in cement paste before and after heat flow
目前,热湿传递理论和实验模拟测试的发展较为完善,在多孔材料内静态湿分布、湿相变和湿传递对导热系数的影响的模拟和评价方面有诸多解决办法。其中,湿分布的模拟可通过浸泡法和恒温恒湿箱法实
水泥浆中高导材料的加入导致的水泥石强度降低是目前高导水泥研究容易被忽略的问题,也是高导水泥研究亟需解决的难题。为了应对此问题,认为可借助大量实验继续筛选高强度、高热导的经济导热材料,并借助数值模拟和实验测试方法进一步优化高导材料体积分数、粒径级配、润湿性和与水泥石结合的紧密程度,达到在保证必须强度的前提下最大程度加快热量传递效率的目的。同时,还可使用固井水泥浆配制时常用的分散剂、消泡剂等提高水泥石强度,增加高导材料的加量。
保温水泥的研究方法和高导水泥类似,主要通过向水泥中添加保温材料或气体,例如中空玻璃微珠、漂珠、膨胀珍珠岩、空气/惰性气体等,或在保证强度前提下提高水灰比,达到有效延长水泥石内热量传递路径的目的,从而降低导热系数,如
与高导材料添加后水泥石强度先增加后降低不同,保温材料的加入会明显降低水泥石导热系数,因为保温材料的抗压强度普遍不高,且材料的加入降低了水化硅酸钙间的有效连接。在应对这个难题时,有如下几种解决方法:(1)选择高性价比高强度和高保温效果的保温材料(如高强度微珠
一般情况下,地热井为三开井或四开井结构,每个开次的地层温差跨度均较大,因而同一开次内水泥浆的硬化温度也差异较大。与此同时,水泥石水化产物是养护温度和养护时间共同作用的结果,且养护温度决定水化产物的类型,水化时间决定产物的数量。鉴于水泥石固体骨架是热传递的主要介质,因此不同深度水泥石在硬化后的一定时间内其水化产物也有所差别。
到目前为止,前人在养护条件对水泥石的影响方面的研究内容主要集中在强度性能上,涉及导热系数的研究相对较少,且研究深度也较浅。基于研究结果,普遍认为养护时间的延长会提高水泥石内水化硅酸钙的含量,从而降低其导热系
受浆体配方、固化条件等因素差异的影响,水泥石组构呈现的复杂性和随机性易导致其多孔结构和孔隙填充难以评估,这是制约水泥石热导率研究进展的最主要因素之
与此同时,多孔介质热传递理论研究与模拟计算经验证明,现有的商业软件(Fluent、Ansys和COMSOL等)能提供丰富的物理模型搭建平台和介质热交换计算模型,全面、准确模拟热量在水泥石内传递特征和规律,以获得水泥石的稳态导热系数。其中,Fluent软件在模拟孔隙率、平均孔径、外加材料加量等方面对导热系数的影响具有独特优
鉴于数值模拟方法的优势,认为在开展相关研究内容的过程中可依据研究需求选择合适模拟软件,全面、准确模拟热量在水泥石内传递特征和规律,定性和定量计算不同水泥石骨架成分、孔隙特征、外加材料、湿分特征以及测试条件下水泥石导热系数,实现精准预测导热系数变化的目的。除此之外,数值模拟方法还能解决实验手段存在的样品特征不可控、测试量繁重的弊端和测试范围有限等难题,达到有效提高研究范围(内容和测试条件)和研究效率的目标。
本文通过总结前人研究,借鉴交叉学科研究经验,得到如下结论:
(1)固井水泥石导热系数变化范围广,能有效改变井筒传热效率。可根据生产实际需求,分段改善地热井水泥石导热系数,可有效提高热水出井温度,增加地热能开发利用效率。
(2)固井水泥石导热系数影响因素较多,应进一步确定稳态法测试导热系数的主体地位,考虑养护条件、湿分布的变化和保温材料的加入对导热系数的影响,并加快高导水泥技术的优化。
(3)数值模拟方法在扩展固井水泥石研究的内容、评价条件和效率方面具有独特优势,有助于提高水泥石导热系数研究的全面性和深入程度,建议推广使用。
参考文献(References)
DAVIS A P,MICHAELIDES E E. Geothermal power production from abandoned oil wells[J]. Energy, 2009,34(7):866-872. [百度学术]
李晓益,何汉平,段友智,等.砂岩孔隙型地热井提高热效工艺分析[J].石油钻采工艺,2017,39(4):484-490. [百度学术]
LI Xiaoyi, HE Hanping, DUAN Youzhi,et al. Analysis on the thermal efficiency improvement process for geothermal well in porous sandstone[J]. Oil Drilling & Production Technology, 2017,39(4):484-490. [百度学术]
朱明,段友智,高小荣,等.地热井热损失影响因素敏感性分析[J].科技导报,2015,33(22):32-36. [百度学术]
ZHU Ming, DUAN Youzhi, GAO Xiaorong, et al. Heat preservation suggestion and heat loss analysis of geothermal well[J]. Science & Technology Review, 2015,33(22):32-36. [百度学术]
方姚,张勇,冉真真.中深层地热井固井导热水泥导热系数研究[J].材料导报,2020,34(20):20028-20033,20052. [百度学术]
FANG Yao, ZHANG Yong, RAN Zhenzhen. Thermal conductivity of cementing conductive cement in medium and deep geothermal well[J]. Materials Review, 2020,34(20):20028-20033,20052. [百度学术]
杨书港.隔热套管完井工艺设计与现场实践[J].石油工业技术监督,2019,35(1):1-4. [百度学术]
YANG Shugang. Thermal insulation casing completion technology design and field practice[J]. Technology Supervision in Petroleum Industry, 2019,35(1):1-4. [百度学术]
庄纯才.地热井筒热损失工程计算方法研究与应用[D].大庆:东北石油大学,2016. [百度学术]
ZHUANG Chuncai. Research and application of engineering calculation method for geothermal wellbore heat loss[D]. Daqing: Northeast Petroleum University, 2016. [百度学术]
BAGHBAN M H, HOVDE P J, JACOBSEN S. Analytical and experimental study on thermal conductivity of hardened cement pastes[J]. Materials and Structures, 2012,46,1537-1546. [百度学术]
NEVILLE A M. Properties of Concrete[M]. Pearson: London, UK, 2011. [百度学术]
张浩,徐拴海,杨雨,等.地热井固井材料导热性能影响因素[J].煤田地质与勘探,2020,48(2):195-201. [百度学术]
ZHANG Hao, XU Shuanhai, YANG Yu, et al. Influencing factors of thermal conductivity of cementing materials for geothermal wells[J]. Coal Geology & Exploration, 2020,48(2):195-201. [百度学术]
ICHIM A, TEODORIU C, FALCONE G. Influence of cement thermal properties on wellbore heat exchange[C]//41st Workshop on Geothermal Reservoir Engineering Stanford University. Stanford, California: 2016. [百度学术]
KRAUSE P. Thermal conductivity of the curing concrete[J]. Archit. Civ. Eng. Environment. Journal, 2008,1:67-74. [百度学术]
李瑞霞,王高升,宋先知,等.固井水泥对同轴型换热系统取热效果影响数值分析[J].建筑科学,2018,34(4):36-40. [百度学术]
LI Ruixia, WANG Gaosheng, SONG Xianzhi, et al. Numerical analysis of the effect of cement sheath on the heat extraction performance of coaxial borehole heat exchangers geothermal system[J]. Building Science, 2018,34(4):36-40. [百度学术]
AKTHAR F K, EVANS J R G. High porosity (90%) cementitious foams[J]. Cement Concrete Research, 2010,40(2):352-358. [百度学术]
HASAN A R, KABIR C S. Fluid flow and heat transfer in wellbores[J]. Society of Petroleum Engineers, Texas, 2002:64-73. [百度学术]
宋绵,龚磊,王新峰,等.阜平县地热水化学特征及结垢腐蚀性研究[J].地质论评,2020,66(S1):146-148. [百度学术]
SONG Mian, GONG Lei, WANG Xinfeng, et al. Study on chemical characteristics and scale corrosion of geothermal water in fuping county[J]. Geological Review, 2020,66(S1):146-148. [百度学术]
AKPAN A E. Estimation of subsurface temperatures in the Tattapani Geothermal Field, Central India, from limited volume of magnetotelluric data and borehole thermograms using a constructive back‑propagation neural network[J]. Earth Interactions, 2014,18:1-26. [百度学术]
GORMAN J M, ABRAHAM J P, SPARROW E M. A novel,comprehensive numerical simulation for predicting temperatures within boreholes and the adjoining rock bed[J]. Geothermics, 2014,50:213-219. [百度学术]
WU B, ZHANG X, JEFFREY R G. A model for downhole fluid and rock temperature prediction during circulation[J]. Geothermics, 2104,50:202-212. [百度学术]
齐迪.井筒换热型地热井产出温度影响因素及预测研究[D].青岛:中国石油大学(华东),2017. [百度学术]
QI Di. Study on influencing factors and prediction of output temperature in wellbore heat‑exchange geothermal well[D]. Qingdao: China University of Petroleum (East China), 2017. [百度学术]
EBRAHIMI, MAHYAR, TORSHIZI, et al. Optimization of power generation from a set of low‑temperature abandoned gas wells, using organic Rankine cycle[J]. Journal of Renewable & Sustainable Energy, 2012,4(6):866-872. [百度学术]
SONG Xianzhi, WANG Gaosheng, SHI Yu, et al. Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system[J]. Energy, 2018,64,1298-1310. [百度学术]
SONG Xianzhi, ZHENG Rui, LI Gensheng, et al. Heat extraction performance of a downhole coaxial heat exchanger geothermal system by considering fluid flow in the reservoir[J]. Geothermics, 2018,76:190-200. [百度学术]
ICHIM A, TEODORIU C, FALCONE G. Estimation of cement thermal properties through the three⁃phase model with application to geothermal wells[J]. Energies, 2018,11(10):2839. [百度学术]
马超.多孔建筑材料内部湿分布及湿传递对导热系数影响研究[D].西安:西安建筑科技大学,2017. [百度学术]
MA Chao. Research on effect of moisture distribution and transfer on thermal conductivity of porous building materials[D]. Xi’an: Xi’an University of Architecture and Technology, 2017. [百度学术]
SONG Xianzhi, ZHENG Rui, LI Ruixia, et al. Study on thermal conductivity of cement with thermal conductive materials in geothermal well[J]. Geothermics, 2019,81:1-11. [百度学术]
WANG Sheng, JIAN Liming, SHU Zhihong, et al. A high thermal conductivity cement for geothermal exploitation application[J]. Natural Resources Research, 2020,29:3675-3687 [百度学术]
WON J, LEE D, NA K, et al. Physical properties of G⁃class cement for geothermal well cementing in South Korea[J]. Renewable Energy, 2015,80:123-131. [百度学术]
杨雨,徐拴海,张浩,等.填料对地热井固井材料导热性能的影响[J].煤田地质与勘探,2020,48(5):182-189. [百度学术]
YANG Yu, XU Shuanhai, ZHANG Hao, et al. Effect of thermally conductive filler on thermal conductivity of cementing materials in geothermal wells[J]. Coal Geology & Exploration, 2020,48(5):182-189. [百度学术]
PASCUAL-MUÑOZ P, INDACOECHEA⁃Vega I, ZAMORA-BARRAZA D, et al. Experimental analysis of enhanced cement⁃sand⁃based geothermal grouting materials[J]. Construction and Building Materials, 2018,185(10):481-488. [百度学术]
段云星,杨浩.固井界面接触热阻对井筒温度场预测的影响[J].科学技术与工程,2020,20(28):11539-11547. [百度学术]
DUAN Yunxing, YANG Hao. Influence of thermal contact resistance of cementing interface on prediction of wellbore temperature field[J]. Science technology and engineering, 2020,20(28):11539-11547. [百度学术]
贾子龙,郑佳,郭艳春,等.岩石地层条件下回填料对地埋孔换热能力的影响[J].城市地质,2020,15(4):410-414. [百度学术]
JIA Zilong, ZHENG Jia, GUO Yanchun, et al. Influence of backfilling materials on the heat transfer capacity of buried hole under the lithostraligraphic condition[J]. Urban Geology, 2020,15(4):410-414. [百度学术]
MIDTTOMME K, ROALDSET E. The effect of grain size on thermal conductivity of quartz sands and silts[J]. Petroleum Geoscience, 1998,4(2):165-172. [百度学术]
杨淑贞,张文仁,李国桦,等.柴达木盆地岩石热导率的饱水试验研究及热流校正[J].岩石学报,1993(2):199-204. [百度学术]
YANG Shuzhen, ZHANG Wenren, LI Guohua, et al. Experimental redearch on the thermal conductivity of water‑saturated rocks and correction to the heat flow observed in Caidam Basin[J]. Acta Petrological Sinica, 1993(2):199-204. [百度学术]
王祥.基于水泥基的保温隔热墙体材料研究与应用[D].合肥:安徽理工大学,2010. [百度学术]
WANG Xiang. Research and application of thermal insulation wall material based on cement[D]. Hefei: Anhui University of Science & Technology, 2020. [百度学术]
WIKTORSKI E, COBBAH C, SUI Dan. Experimental study of temperature effects on wellbore material properties to enhance temperature profile modeling for production wells[J]. Journal of Petroleum Science and Engineering, 2019,176:689-701. [百度学术]
ABDULAGATOVA Z, ABDULAGATOV I M, EMIROV V N. Effect of temperature and pressure on the thermal conductivity of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2009,46(6):1055-1071. [百度学术]
王世芳,吴涛.多孔介质有效热导率的一种新模型[J].工程热物理学报,2016,37(12):2626-2630. [百度学术]
WANG Shifang, WU Tao. A new fractal model for the effective thermal conductivity of porous media[J]. Journal of Engineering Thermophysics, 2016,37(12):2626-2630. [百度学术]
王成文,王瑞和,步玉环,等.深水固井水泥性能及水化机理[J].石油学报,2009,30(2):280-284. [百度学术]
WANG Chengwen, WANG Ruihe, BU Yuhuan, et al. Properties and hydration mechanism of deepwater cementing system[J]. Acta Petrolei Sinica, 2009,30(2):280-284. [百度学术]
QOMI M J A, PELLENQ R. Physical origins of thermal properties of cement paste[J]. Phys. Rev. Applied, 2015. [百度学术]
陈驰,朱传庆,唐博宁,等.岩石热导率影响因素研究进展[J].地球物理学进展,2020,35(6):2047-2057. [百度学术]
CHEN Chi, ZHU Chuanqing, TANG Boning, et al. Progress in the study of the influencing factors of rock thermal conductivity[J]. Progress in Geophysics, 2020,35(6):2047-2057. [百度学术]
BLÁZQUEZ C S, MARTÍN A F, NIETO I M, et al. Analysis and study of different grouting materials in vertical geothermal closedloop systems[J]. Renewable Energy, 2017,114:1189-1200. [百度学术]
蒋国盛,郑少军,代天,等.纳米二氧化硅在固井水泥浆中的应用研究进展[J].钻探工程,2021,48(1):68-74. [百度学术]
JIANG Guosheng, ZHENG Shaojun,DAI Tian, et al. Research status of nano‑silica application in well cementing slurry[J]. Drilling Engineering, 2021,48(1):68-74. [百度学术]
BORINAGA⁃TREVINO R, PASCUAL⁃MUNOZ P, CALZADA⁃PEREZ M A, et al. Freeze⁃thaw durability of cement⁃based geothermal grouting materials[J]. Construction & Building Materials, 2014,55(3):390-397. [百度学术]
GARNIER B, BOUDENNE A. Use of hollow metallic particles for the thermal conductivity enhancement and lightening of filled polymer[J]. Polymer Degradation and Stability, 2016,127:113-118. [百度学术]
赵进.江苏油田保温水泥浆技术可行性探讨[J].内蒙古石油化工,2020,46(11):86-88. [百度学术]
ZHAO Jin. Discussion on feasibility of thermal insulation cement slurry technology in Jiangsu Oilfield[J]. Inner Mongolia Petrochemical Industry, 2020,46(11):86-88. [百度学术]
BRIGAUD F, VASSEUR G. Mineralogy.ntary rocks[J]. Geophysical Journal International, 1989,98(3):525-542. [百度学术]
BUNTEBARTH G. Thermal properties of KTB—Oberpfalz VB core samples at elevated temperature and pressure: Buntebarth, G Sci Drilling V2,N2-3,P73-80[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1991,29(4): 219. [百度学术]
MIDTTOMME K, ROALDSET E. The effect of grain size on thermal conductivity of quartz sands and silts[J]. Petroleum Geoscience, 1998,4(2):165-172. [百度学术]
TAVMAN I H. Effective thermal conductivity of granular porous materials[J]. International Communications in Heat and Mass Transfer, 1996,23(2):169-176. [百度学术]
FUCHS S, FÖRSTER A. Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin[J]. Geochemistry, 2010,70:13-22. [百度学术]
WU Rui, LIAO Qiang, ZHU Xun, et al. A fractal model for determining oxygen effective diffusivity of gas diffusion layer under the dry and wet conditions[J]. International Journal of Heat and Mass Transfer, 2011,54:4341-4348. [百度学术]
MIAO Tongjun, CHENG Sujun, CHEN Aimin, et al. Analysis of axial thermal conductivity of dual⁃porosity fractal porous media with random fractures[J]. International Journal of Heat and Mass Transfer, 2016,102:884-890. [百度学术]
方姚.面向中深层地热井的固井复合材料性能研究与井下换热过程模拟[D].南京:东南大学,2019. [百度学术]
FANG Yao. Well cementation composites performance research and numerical simulation of underground heat exchange process for mid‑deep geothermal well[D]. Nanchang: Southeast University, 2019. [百度学术]
BECKER R, KATZ A. Effect of moisture movement on tested thermal conductivity of moist materials[J]. Journal of Materials in Civil Engineering, 1990,2(2):72-83. [百度学术]
CHO W J, KWON S, CHOI J W. The thermal conductivity for granite with various water contents[J]. Engineering Geology, 2009,107(3-4):167-171. [百度学术]
QIN Menghao, BELARBI R, AIET-MOKHTAR A, et al. Simulation of coupled heat and moisture transfer in air‑conditioned buildings[J]. Automation in Construction, 2009,18(5):624-631. [百度学术]
TAOUKIL D, BOUARDI A E, SICK F, et al. Moisture content influence on the thermal conductivity and diffusivity of wood‑concrete composite[J]. Construction & Building Materials, 2013,48(11):104-115. [百度学术]
曹国举,宫经伟,蔺元,等.水泥石导热系数影响因素研究[J].人民黄河,2020,42(2):94-98,116. [百度学术]
CAO Guoju, GONG Jingwei, LIN Yuan, et al. Research on influence factor of thermal conductivity of cement stone[J]. Yellow River, 2020,42(2):94-98,116. [百度学术]
WON J, CHOI H J, LEE H, et al. Numerical investigation on the effect of cementing properties on the thermal and mechanical stability of geothermal wells[J]. Energies, 2017,9(12):1016. [百度学术]
易灿,闫振来,郭磊.井下循环温度及其影响因素的数值模拟研究[J].石油钻探技术,2007(6):47-49. [百度学术]
YI Can, YAN Zhenlai, GUO Lei. Numerical simulation of circulating temperature and it’s impacting parameters[J]. Petroleum Drilling Techniques, 2007(6):47-49. [百度学术]
宋戈.气井井筒瞬态温度压力耦合模型研究[D].成都:西南石油大学,2015. [百度学术]
SONG Ge. Study on coupling model of transient temperature and pressure in gas well bore[D]. Chengdu: Southwest Petroleum University, 2015. [百度学术]
庞伟,段友智,高小荣,等.水热型地热井局部完井井段生产研究[J].水动力学研究与进展A辑,2015,30(4):446-451. [百度学术]
PANG Wei, DUAN Youzhi, GAO Xiaorong, et al. Research on partial producing of hydrothermal wells[J]. Chinese Journal of Hydrodynamics, 2015,30(4):446-451. [百度学术]
马振喜.钻井井筒温度场的分析研究[D].北京:中国石油大学(北京),2019. [百度学术]
MA Zhenxi. Analysis and research on temperature field of drilling wellbore[D]. Beijing: China University of Petroleum, 2019. [百度学术]
黄津津.含湿量对轻质保温混凝土导热系数影响的实验研究[D].西安:西安建筑科技大学,2020. [百度学术]
HUANG Jinjin. Experimental study on the influence of moisture content on thermal conductivity of lightweight insulating concrete[D]. Xi’an: Xi’an University of Architecture and Technology, 2020. [百度学术]
GB/T 10294—2008,绝热材料稳态热阻及有关特性的测定 防护热板法[S]. [百度学术]
GB/T 10294—2008, Thermal insulation—Determination of steady⁃state thermal resistance and related properties—Guarded hot plate apparatus[S]. [百度学术]
GB/T 10295—2008,绝热材料稳态热阻及有关特性的测定 热流计法[S]. [百度学术]
GB/T 10295—2008, Thermal insulation—Determination of steady‑state thermal resistance and related properties—Heat flow meter apparatus[S]. [百度学术]
刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006. [百度学术]
LIU Wei, FAN Aiwu, HUANG Xiaoming. Theory and Application of Heat and Mass Transfer in Porous Media[M]. Beijing: Science Press, 2006. [百度学术]
郭平业,卜墨华,李清波,等.岩石有效热导率精准测量及表征模型研究进展[J].岩石力学与工程学报,2020,39(10):1983-2013. [百度学术]
GUO Pingye, BU Mohua, LI Qingbo, et al. Research progress of accurate measurement and characterization model of effective thermal conductivity of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2020,39(10):1983-2013. [百度学术]
韩晓烽.多孔建筑材料热湿耦合传递特性的数值模拟与实验研究[D].北京:中国计量大学,2017. [百度学术]
HAN Xiaofeng. Numerical simulation and experimental study on coupled heat and moisture transfer characteristics of porous building materials[D]. Beijing: China Jiliang University, 2017. [百度学术]
申娜娜.空心玻璃微珠轻质高强材料的制备与性能研究[D].天津:天津大学,2014. [百度学术]
SHEN Nana. Study on preparation and properties of hollow glass bead light weight and high strength material[D]. Tianjin: Tianjin University, 2014. [百度学术]
周建伟,杨文,程宝军,等.超细粉煤灰和偏高岭土对高强混凝土耐热性能的影响[J].硅酸盐通报,2020,39(6):1784-1790. [百度学术]
ZHOU Jianwei, YANG Wen, CHENG Baojun, et al. Effect of ultra‑fine fly ash and metakaolin on heat resistance of high strength concrete[J]. Bulletin of the Chinese Ceramic Society, 2020,39(6):1784-1790. [百度学术]
王瑞.超细粉煤灰高强混凝土性能研究[D].合肥:安徽理工大学,2018. [百度学术]
WANG Rui. Study on properties of ultra fine fly ash high strength concrete[D]. Hefei: Anhui University of Science and Technology, 2018. [百度学术]
刘静静,李远兵,李亚伟,等.隔热材料的热导率与孔径分布的相关性研究[J].耐火材料,2016,50(5):335-339. [百度学术]
LIU Jingjing, LI Yuanbing, LI Yawei, et al. Correlation of thermal conductivity and pore size distribution of insulating refractories[J]. Refractories, 2016,50(5):335-339. [百度学术]
习雨同.泡沫混凝土气孔结构与性能研究[D].南京:南京航空航天大学,2016. [百度学术]
XI Yutong. Research on pore structure and properties of foam concrete[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. [百度学术]
崔玉理,贺鸿珠.温度对泡沫混凝土性能影响[J].建筑材料学报,2015,18(5):120-123,130. [百度学术]
CUI Yuli, HE Hongzhu. Effect of temperature on performance of foam concrete[J]. Journal of Building Materials, 2015,18(5):120-123,130. [百度学术]
朱静.中深层地热井底部液固流动与传热强化研究[D].南京:东南大学,2019. [百度学术]
ZHU Jing. Study on liquid‑solid flow and heat transfer enhancement at the bottom of medium‑deep geothermal wells[D]. Nanjing: Southeast University, 2019. [百度学术]
石司琴.钢渣泡沫混凝土保温性能研究[D].合肥:安徽工业大学,2016. [百度学术]
SHI Siqin. Research on thermal insulation performance of steel slag foamed concrete[D]. Hefei: Anhui University of Technology, 2016. [百度学术]
张婵韬.玻化微珠保温砂浆导热系数模型研究[D].长沙:湖南大学,2014. [百度学术]
ZHANG Chantao. Study on thermal conductivity model of hollow beads insulating mortar[D]. Changsha: Hunan University, 2014. [百度学术]