摘要
干热岩资源是一种储量巨大的可再生清洁能源,干热岩的开发需通过深井将高压水注入深部岩层,使其渗透进入岩层的缝隙并吸收地热能量。裂隙网络作为流体的运移通道,在干热岩热能的开采与利用方面至关重要。储层裂隙因其分布的高度非均质性、控制和影响因素的多样性等,研究工作存在难点。本文在采用物探技术和地震探测进行靶区圈定和钻孔定位、钻井过程中进行裂隙垂向精准定位、综合测井判断热储层位置以及热储质量评价、微地震判别压裂过程中的裂缝空间展布等方面,系统总结分析干热岩储层裂隙准确识别的关键技术,对提高干热岩的开采和利用效率具有指导意义。
干热岩是指内部没有或者仅存少量流体、温度>180 ℃的异常高温岩体,干热岩资源是埋藏在地球深部潜力巨大的可再生能
从已经取得成功的干热岩开采项目来
干热岩的形成条件与石油孕育条件有着相似之处,干热岩勘探可借鉴石油开发技术理论,可以从干热岩的“源”、“储”、“通”、“盖”四方面进行开发评
重力勘探是通过测量地球表面重力场的变化来研究地球内部密度不均匀体及其分布的一种物探方法。它的测量对象是地球表面的重力场分

图1 重力异常推断断裂分
Fig.1 Fault distribution inferred by gravity anomaly
赵雪宇
大地电磁(Magnetotelluric,MT)是利用天然交变电磁场来研究地球电性结构的地球物理勘探方法。电磁法的优势是相对成本较低,野外施工相对简单、效率较高而且勘探范围大,由于高温岩体与围岩的电性差异较为明显,为电法和电磁法的应用提供了物性基
王家

图2 大地电磁测深反演结
Fig.2 Inversion results of magnetotelluric sounding

图3 重力和大地电磁联合反演推断解释剖
Fig.3 Joint inversion of gravity and magnetotelluric to infer and interpret sections
大地电磁在探测深部构造上,其探测深度可达几十到上百公里,对地下电性构造有很好的区分。在干热岩探测中,大地电磁法对于干热岩盖层的结构、形态、范围、厚度等都能有很好的反映;对于大型导热断裂带,在大地电磁剖面测量中,也能有很好的反
在综合重力和大地电磁基础上,结合地震探测和精细地热地质调查,可精准实现干热岩孔位优选。地震勘探技术具有探测深度大、探测精度和分辨率高等优点,能够较好地对岩性分界面进行精确刻
干热岩孔位应选在区域构造相对稳定、无明显断裂带经过地区,选择切割深度较深的断裂上盘,并避开断裂破碎带位

图4 LH1、LH5大地电磁测深电阻率等值断面
Fig.4 Equivalent sections of resistivity of LH1 and
LH5 magnetotelluric sounding
结合地球物理解译与野外岩性、构造勘查,绘制出了清泉林场目标区钻井孔位概念模型(见

图5 清泉林场目标区钻井孔位概念模型
Fig.5 Conceptual model of drilling hole location in the target area of Qingquan Forest Farm
开采干热岩资源的方法是钻开储层、建立增强型地热系统(EGS),因此干热岩钻井工作至关重
在福建漳州干热岩井进行了取心,取心钻进中采用“孕镶金刚石钻头+取心钻具+螺杆钻具”复合钻进。钻井效率0.6~1.2 m/h,累计取心进尺118.26 m,获取岩心101.09 m,岩心采取率85.48%。在靠近断裂部位进行钻井工作,随着钻井深度的增加其衍生次级断裂及小裂隙逐渐增多(见

图6 福建漳州干热岩井岩心
Fig.6 Cores from a hot dry rock well in Zhangzhou, Fujian
漏浆量的多少能够间接反映热储裂隙发育程度,根据福建漳州干热岩井钻进情况记录,该井全井段均有不同程度的漏浆现象发生。其中一开、二开过程中漏浆现象特点为:漏浆段较短,漏失量较小,持续时间短,该过程指示钻进过程中揭露的裂隙为小裂隙,裂隙之间贯通性较差,且地层压力与钻井液压力基本持平。三开过程的漏浆特点为:漏失量较大,漏浆较为频繁,持续时间较长,该过程指示钻进过程中,随深度增加,钻井液压力与地层之间压力差值逐渐加大,并且次级断裂较多,裂隙之间形成贯通的过水通道,造成漏浆现象持续发生。
测井是将地球物理仪器放入钻井孔内,通过测量井壁周围岩石的地球物理响应,得到井壁围岩与深度相关的不同物理场记录曲线,通过对测井曲线的分析,推断钻孔周围介质的性
以福建漳州干热岩测井资料为例(见
层号 | 井段/ m | 层厚/ m | 电阻率/ Ω | 声波时差/ (μs∙ | 孔隙度/ % | 渗透率/ 1 | 泥质含量/ % | 井温/ ℃ | 解释结论 |
---|---|---|---|---|---|---|---|---|---|
1 | 492.5~494.3 | 1.8 | 1368.0 | 282.5 | 13.9 | 25.2 | 0.05 | 45.1 | 一类裂缝层 |
2 | 499.5~502.6 | 3.0 | 1193.4 | 213.5 | 1.7 | 0.1 | 0.06 | 45.2 | 三类裂缝层 |
3 | 672.8~673.9 | 1.1 | 1766.8 | 210.9 | 0.9 | 0.1 | 0.08 | 46.9 | 三类裂缝层 |
4 | 738.8~743.1 | 4.3 | 638.9 | 191.3 | 1.2 | 0.1 | 0.06 | 48.1 | 三类裂缝层 |
5 | 892.1~895.4 | 3.3 | 1482.5 | 230.3 | 1.0 | 0.1 | 0.10 | 49.7 | 三类裂缝层 |
6 | 945.6~946.4 | 0.8 | 1594.9 | 223.3 | 2.9 | 0.1 | 0.07 | 50.7 | 三类裂缝层 |
7 | 948.9~951.0 | 2.1 | 596.6 | 274.8 | 9.4 | 3.4 | 0.07 | 50.6 | 二类裂缝层 |
8 | 1214.4~1222.5 | 8.1 | 750.1 | 190.8 | 1.8 | 0.2 | 0.07 | 54.1 | 三类裂缝层 |
9 | 1243.8~1244.9 | 1.1 | 1765.7 | 221.6 | 4.7 | 0.4 | 0.07 | 54.4 | 三类裂缝层 |
10 | 1286.4~1287.5 | 1.1 | 1546.9 | 301.2 | 11.4 | 8.6 | 0.08 | 55.2 | 二类裂缝层 |
11 | 1345.8~1347.9 | 2.1 | 746.3 | 261.7 | 10.0 | 5.2 | 0.05 | 55.8 | 二类裂缝层 |
12 | 1446.9~1448.1 | 1.2 | 1619.2 | 211.3 | 3.6 | 0.1 | 0.03 | 57.3 | 三类裂缝层 |
13 | 1890.3~1894.3 | 4.0 | 1787.9 | 210.2 | 3.3 | 0.3 | 0.06 | 64.0 | 三类裂缝层 |
14 | 1902.1~1907.5 | 5.4 | 1041.5 | 171.7 | 1.2 | 0.1 | 0.06 | 64.7 | 三类裂缝层 |
15 | 2157.0~2161.0 | 4.0 | 697.0 | 247.1 | 4.7 | 2.6 | 0.10 | 68.6 | 三类裂缝层 |
16 | 2168.9~2172.4 | 3.5 | 863.0 | 292.1 | 11.4 | 20.9 | 0.08 | 68.8 | 一类裂缝层 |
17 | 2258.0~2260.0 | 2.0 | 807.0 | 245.6 | 3.1 | 0.1 | 0.08 | 69.9 | 三类裂缝层 |
18 | 2264.9~2268.9 | 4.0 | 386.9 | 200.2 | 1.7 | 0.1 | 0.07 | 70.0 | 三类裂缝层 |
19 | 2296.6~2298.3 | 1.7 | 1385.5 | 239.7 | 4.7 | 0.1 | 0.06 | 70.6 | 三类裂缝层 |

图7 福建漳州干热岩井测井曲线成
Fig.7 Logging curves of the dry hot rock well in Zhangzhou, Fujian
测井资料显示电阻率较高,声波时差数值较小,与花岗岩地层的测井响应特征一致。本井地层总的特点是地层比较致密,容水孔隙比较少,有效孔隙度低,可能的地下水储集空间应该是裂缝和溶蚀孔隙,因此测井解释主要是在该类地层中寻找裂缝和溶蚀孔隙井段,并根据发育程度判断地层产水能力。其主要方法是在高电阻率背景下寻找低电阻率异常,并通过自然伽马、声波时差分析电阻率降低的原因是否是岩性变化影响,若不是则可能是地层裂隙发育所致,再进一步分析自然电位、井径、井温曲线有无异常变化,通常较大规模的裂缝发育段会出现泥浆漏失,从而引起自然电位异常,井温偏低,井径值异常。本井电阻率整体较高,且纵向变化较小,反映地层致密、粒间孔隙度比较小,原生孔隙容水性比较差,地下水主要靠溶蚀孔隙和裂缝容水。
1、16号层自然电位在该段整体显的较高,存在明显正异常,这2层段上下地层的平均电阻率都较高于层内平均电阻率,自然伽马低值,井径值变大,双感应八侧向出现明显低值,对应的声波时差明显增大,分析认为是地层存在裂隙的原因,该层段裂缝发育良好;根据测井曲线响应的变化程度,测井综合解释结论:一类裂缝层。
7、10、11号层自然电位在该段整体比较高,存在明显正异常,该3层上下地层的平均电阻率都较高于层内平均电阻率,自然伽马低值,井径值变大,双感应八侧向出现低值,对应的声波时差也有所增大,分析认为是地层存在裂隙原因,该层段裂缝比较发育;根据测井曲线响应的变化程度,测井综合解释结论:二类裂缝层。
2~6、8、9、12~15、17~19号层的电阻率降低程度较小,声波时差在该段变化较小,井径值变化较小,伽马值较低,因此分析该层裂缝发育较上面3层差,根据测井曲线响应的变化程度,测井综合解释结论:三类裂缝层。
井中地球物理、地震方法、自然电场法等可以用来监测干热岩开发的运行状态,对于干热岩资源顺利开发及可持续运行具有重要意义。开发利用干热岩资源一个最关键的技术就是储层改造,主要改造手段是水力压裂。水力压裂是一种通过增加地层与井之间流体通道(即裂缝)的数量和延伸范围来提高产量的技术,作业过程中必然会产生微地
在干热岩勘探选区过程中,需要借助各类地球物理方法进行间接探测从而确认钻井位
干热岩裂隙储层识别,在干热岩热能的开采与利用方面至关重要,综合采用物探技术和地震探测进行靶区圈定以及钻孔定位,综合测井判断热储层位置以及热储质量评价、微地震判别压裂过程中的裂缝空间展布,但现有测井软件主要是石油系统针对沉积岩地层进行的研发,仍须进一步研发针对火成岩或变质岩专用测井软件以提高地层的识别精确度;进一步加大综合测井设备耐高温、耐高压的适应性研发以及高温随钻测量装备的研发。
参考文献(References)
汪集旸,胡圣标,庞忠和,等.中国大陆干热岩地热资源潜力评估[J].科技导报,2012,30(32):25-31. [百度学术]
WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012,30(32):25-31. [百度学术]
张盛生,张磊,田成成,等.青海共和盆地干热岩赋存地质特征及开发潜力[J].地质力学学报,2019,25(4):501-508. [百度学术]
ZHANG Shengsheng, ZHANG Lei, TIAN Chengcheng, et al. Occurrence geological characteristitics and development potential of hot dry rocks in Qinghai Gonghe Basin[J]. Journal of Geomechanics, 2019,25(4):501-508. [百度学术]
马峰,蔺文静,郎旭娟,等.我国干热岩资源潜力区深部热结构[J].地质科技情报,2015,34(6):176-181. [百度学术]
MA Feng, LIN Wenjing, LANG Xujuan, et al. Deep geothermal structures of potential hot dry rock resources area in China[J]. Geological Science and Technology Information, 2015,34(6):176-181. [百度学术]
窦斌,高辉,周刚,等.我国发展增强型地热开采技术所面临的机遇与挑战[J].地质科技情报,2014,33(5):208-210. [百度学术]
DOU Bin, GAO Hui, ZHOU Gang, et al. Opportunities and challenges of developing enhance geothermal system technology in China[J]. Geological Science and Technology Information, 2014,33(5):208-210. [百度学术]
杨洲,杨闪,陈雄.干热岩开发中裂隙内流体温度的影响因素分析[J].矿产勘查,2015,6(1):98-101. [百度学术]
YANG Zhou, YANG Shan, CHEN Xiong. Analysis of influencing factors of the fissure water temperature of the injection well during development of hot day rock[J]. Mineral Exploration, 2015,6(1):98-101. [百度学术]
Armstead C H, Tester J W. Heat Mining: A New Source of Energy[M]. New York: E & FN Spon., 1987. [百度学术]
李川,王时龙,张贤明,等.干热岩在地热发电中的应用[J].热力发电,2008,37(11):138-139. [百度学术]
LI Chuan, WANG Shilong, ZHANG Xianming, et al. Application of dry hot rock in geothermal power generation[J]. Thermal Power Generation, 2008,37(11):138-139. [百度学术]
童亨茂.储层裂缝描述与预测研究进展[J].新疆石油学院学报,2004,16(2):9-13. [百度学术]
DONG Hengmao. Research progress of reservoir fracture description and prediction[J]. Journal of Xinjiang Petroleum Institute, 2004,16(2):9-13. [百度学术]
Legarth B, Huenges E, Zimmermann G. Hydraulic fracturing in a sedimentary geothermal reservoirs: Results and implications[J]. International Journal of Rock Mechanics and Mining Sciences, 2005,42(7/8):1028-1041. [百度学术]
Legarth B, Tischner T, Huenges E, et al. Stimulation experiments in sedimentary, low‑enthalpy reservoirs for geothermal power generation[J]. Geothermics, 2003,32(4/6):487-495. [百度学术]
罗天雨,刘全稳,刘元爽.干热岩压裂开发技术现状及展望[J].中外能源,2017,22(10):23-27. [百度学术]
LUO Tianyu, LIU Quanwen, LIU Yuanshuang. Present situation and prospect on hydraulic fracturing development technique of hot dry rock[J]. Sino‑Global Energy, 2017,22(10):23-27. [百度学术]
夏杰勤,窦斌,徐超,等.干热岩热储建造的二氧化碳爆破致裂器优化设计[J].钻探工程,2021,48(1):75-80. [百度学术]
XIA Jieqin, DOU Bin, XU Chao, et al. Optimum design of CO2 fracture initiator for thermal reservoir construction in hot dry rock[J]. Drilling Engineering, 2021,48(1):75-80. [百度学术]
郭亮亮.增强型地热系统水力压裂和储层损伤演化的试验及模型研究[D].长春:吉林大学,2016. [百度学术]
GUO Liangliang. Test and model research of hydraulic fracturing and reservoir damage evolution in enhanced geothermal system [D]. Changchun: Jilin University, 2016. [百度学术]
许天福,胡子旭,李胜涛,等.增强型地热系统:国际研究进展与我国研究现状[J].地质学报,2018,92(9):1936-1947. [百度学术]
XU Tianfu, HU Zixu, LI Shengtao, et al. Enhanced geothermal system: International progresses and research status of China[J]. Acta Geologica Sinica, 2018,92(9):1936-1947. [百度学术]
Baria R, Jung R, Tischner T, et al. “Creation of an HDR/EGS reservoir at 5000 m depth at the European HDR project” Proc[C]//31st Stanford Geothermal Workshop, Calif.: 2006. [百度学术]
Luis A. Large scale hydraulic fracturing test on a rock with artificial discontinuities[D]. Colorado: Golden, 2007. [百度学术]
Teufel LW, Clark JA. Hydraulic fracture propagation in layered rock experimental studies of fracture containment[J]. SPEJ9878, 1984,24(2):449-456. [百度学术]
张万鹏.用近接型相似微小地震对判明干热岩热储层主要裂隙方位的研究[D].焦作:河南理工大学,2012. [百度学术]
ZHANG Wanpeng. The azimuth determination research of the main fractures in hot dry rock reservoir by proximity similar microseismic doublets[D]. Jiaozuo: Henan Polytechnic University, 2012. [百度学术]
杨冶,姜志海,岳建华,等.干热岩勘探过程中地球物理方法技术应用探讨[J].地球物理学进展,2019,34(4):1556-1567. [百度学术]
YANG Ye, JIANG Zhihai, YUE Jianhua, et al. Discussion on application of geophysical methods in hot dry rock (HDR) exploration[J]. Progress in Geophysics, 2019,34(4):1556-1567. [百度学术]
卢予北,张晗,王攀科,等.河南省干热岩赋存地质环境及找矿方向[J].钻探工程,2021,48(2):1-7. [百度学术]
LU Yubei, ZHANG Han, WANAG Panke, et al. Geological environment and prospecting fields of hot dry rocks in Henan province[J]. Drilling Engineering, 2021,48(2):1-7. [百度学术]
陈雄.地球物理方法在干热岩勘查中的应用研究[D].长春:吉林大学,2016. [百度学术]
CHEN Xiong. Research on the application of geophysical methods in hot dry rock prospecting[D]. Changchun: Jilin University, 2016. [百度学术]
焦新华,吴彦冈.重力与磁法勘探[M].北京:地质出版社,2009. [百度学术]
JIAO Xinhua, WU Yangang. Gravity and Magnetic Exploration[M]. Beijing: Geological Publishing House. 2009. [百度学术]
刘义波.长春市净月区地热地球物理勘查与研究[D].长春:吉林大学,2014. [百度学术]
LIU Yibo. Geothermal geophysical prospecting and research in Jingyue district[D]. Changchun: Jilin University, 2014. [百度学术]
中国地质科学院水文地质环境地质研究所.福建漳州干热岩资源地球物理勘查报告[R].石家庄:中国地质科学院水文地质环境地质研究所,2014. [百度学术]
Institute of Hydrogeology and Environmental Geology, CAGS. Geophysical exploration report of hot dry rock resources in Zhangzhou, Fujian province[R]. Shijiazhuang: Institute of Hydrogeology and Environmental Geology, CAGS, 2014. [百度学术]
赵雪宇,曾昭发,吴真玮,等.利用地球物理方法圈定松辽盆地干热岩靶区[J].地球物理学进展,2015,30(6):2863-2869. [百度学术]
ZHAO Xueyu, ZENG Zhaofa, WU Zhenwei, et al. Determining the target area of dry hot rock in Songliao Basin by geophysical method[J]. Progress in Geophysics, 2015,30(6):2863-2869. [百度学术]
陆川,王贵玲.干热岩研究现状与展望[J].科技导报,2015,33(19):13-21. [百度学术]
LU Chuan, WANG Guiling. Research status and prospects of hot dry rock[J]. Science & Technology Review, 2015,33(19):13-21. [百度学术]
Oskooi B, Pedersen L B, Smirnov M, et al. The deep geothermal structure of the Mid‑Atlantic Ridge deduced from MT data in SW Iceland[J]. Phys. Earth Planet. Inter., 2005,150(1-3):183-195. [百度学术]
Oskooi B, Manzella A. 2D inversion of the Magnetotelluric data from travale geothermal field in Italy[J]. Journal of the Earth & Space Physics, 2011,36(4):1-18. [百度学术]
Volpi G, Manzella A, Fiordelisi A. Investigation of geothermal structures by magnetotellurics(MT): An example from the Mt. Amiata area, Italy[J]. Geothermics, 2003,32(2):131-145. [百度学术]
王家映.地球物理反演理论[M].北京:高等教育出版社,2011. [百度学术]
WANG Jiayin. Geophysical Inversion Theory[M]. Beijing: Higher Education Press, 2011. [百度学术]
孙知新,李百祥,王志林.青海共和盆地存在干热岩可能性探讨[J].水文地质工程地质,2011,38(2):119-124. [百度学术]
SUN Zhixin, LI Baixiang, WANG Zhilin. Exploration of the possibility of hot dry rock occurring in the Qinghai Gonghe Basin[J]. Hydrogeology & Engineering Geology, 2011,38(2):119-124. [百度学术]
薛建球,甘斌,李百祥,等.青海共和—贵德盆地增强型地热系统(干热岩)地质-地球物理特征[J].物探与化探,2013,37(1):35-41. [百度学术]
XUE Jianqiu, GAN Bin, LI Baixiang, et al. Geological‑geophysical characteristics of enhanced geothermal systems (hot dry rocks) in Gonghe‑Guide Basin[J]. Geophysical and Geochemical Exploration, 2013,37(1):35-41. [百度学术]
张前,吴小洁,谢顺胜,等.综合物探方法在海南陵水地区干热岩资源勘查中的应用[J].工程地球物理学报,2015,12(4):477-483. [百度学术]
ZHANG Qian, WU Xiaojie, XIE Shunsheng, et al. The application of comprehensive geophysical methods to exploration of hot dry rock resources in Lingshui area of Hainan[J]. Chinese Journal of Engineering Geophysics, 2015,12(4):477-483. [百度学术]
曾昭发,刘四新.工程与环境地球物理[M].北京:地质出版社,2010. [百度学术]
ZENG Zhaofa, LIU Sixin. Engineering and Environmental Geophysics[M]. Beijing: Geological Publishing House. 2010. [百度学术]
Soma N, Niisuma H, Baria R. Estimation of deeper structure at the soultz hot dry rock field by means of reflection method using 3C AE as wave source[J]. Pure & Applied Geophysics, 1997,150(3-4):661-676. [百度学术]
Karastathis V K, Papoulia J, Fiore B D, et al. Deep structure investigations of the geothermal field of the North Euboean Gulf, Greece, using 3-D local earthquake tomography and curie point depth analysis[J]. Journal of Volcanology and Geothermal Research, 2011,206(3-4):106-120. [百度学术]
Ishii Y. Passive and active seismic prospecting in geothermal area[J]. Geophys, Explor., 1976,29:14-31. [百度学术]
Majer E L, Mcevilly T V. Seismological investigations at the Geysers geothermal field[J]. Geophys. 1979,44:246-269. [百度学术]
Abiye T A, Haile T. Geophysical exploration of the Boku geothermal area[J]. Central Ethiopian Rift. Geothermics, 2008,37(6):586-596. [百度学术]
Yang Y J, Ritzwollerit M H, Jones C H. Subsurface characterization of the COSO geothermal field and surroundings by ambient noise tomography[J]. Geochemistry, Geophysics, and Geosystems, 2010:1-43. [百度学术]
蔺文静,王凤元,甘浩男,等.福建漳州干热岩资源选址与开发前景分析[J].科技导报,2015,33(19):28-34. [百度学术]
LIN Wenjing, WANG Fengyuan, GAN Haonan, et al. Site selection and development prospect of a hot dry rock resource project in Zhangzhou geothermal field, Fujian province[J]. Science & Technology Review, 2015,33(19):28-34. [百度学术]
谭现锋,刘肖,王贵玲,等.利津干热岩型地热资源调查评价关键技术研究[J].地质学报,2020,94(7):2166-2176. [百度学术]
TAN Xianfeng, LIU Xiao, WANG Guiling, et al. Research on the key technology of investigation and evaluation of hot dry rock geothermal resources in Lijin[J]. Acta Geologica Sinica, 2020,94(7):2166-2176. [百度学术]
胡圣标,何丽娟,汪集旸.中国大陆地区大地热流数据汇编(第三版)[J].地球物理学报,2001,44(5):611-626. [百度学术]
HU Shengbiao, HE Lijuan, WANG Jiyang. Compilation of heat flow data in the continental area of China (Third edition) [J]. Chinese Journal of Geophysics, 2001,44(5):611-626. [百度学术]
谭现锋,王景广,郭新强,等.螺杆钻进工艺在青海共和干热岩GR1钻井中的应用[J].钻探工程,2021,48(2):49-53. [百度学术]
TAN Xianfeng, WANG Jingguang, GUO Xinqiang, et al. Application of PDM drilling technology in Well-GR1 drilling in hot dry rock[J]. Drilling Engineering, 2021,48(2):49-53. [百度学术]
谭现锋,马哲民,段隆臣,等.复合动力钻进工艺在干热岩钻井中的应用研究[J].钻探工程,2021,48(7):1-8. [百度学术]
TAN Xianfeng, MA Zhemin, DUAN Longchen, et al. Application of compound power drilling technology in hot dry rock drilling[J]. Drilling Engineering, 2021,48(7):1-8. [百度学术]
王尧,郭迟辉,吕承训,等.国际水力压裂与地震关系研究进展及地质工作建议[J/OL].地质通报:1-10[2021-05-11].http://kns.cnki.net/kcms/detail/11.4648.p.20210326.1547.002.html. [百度学术]
WANG Yao, GUO Chihui, LÜ Chengxun, et al. Research progress on the relationship between international hydraulic fracturing and earthquakes and suggestions for geological work[J/OL]. Geological Bulletin of China: 1-10[2021-05-11]. http://kns.cnki.net/kcms/detail/11.4648.p.20210326.1547.002.html. [百度学术]
Li L, Tan J, Wood D A, et al. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs[J]. Fuel, 2019, 242:195-210. [百度学术]
Cipolla CL, Wright CA. Diagnostic techniques to understand hydraulic fracturing: what? why? and how?[J]. SPE Production & Facilities, 2002,17(1):23-35. [百度学术]
Michelet S, Toksoz M N. Fracture mapping in the Soultz‑sous‑Forêts geothermal field using microearthquake locations[J]. Journal of Geophysical Research Solid Earth, 2007,112(B7):1-14.a [百度学术]
徐胜强,张旭东,张保平,等.测斜仪监测技术在共和盆地干热岩井压裂中的应用研究[J].钻探工程,2021,48(2):42-48. [百度学术]
XU Shengqiang, ZHANG Xudong, ZHANG Baoping, et al. Application of inclinometer monitoring technology in Gonghe hot dry rock well fracturing[J]. Drilling Engineering, 2021,48(2):42-48. [百度学术]
Fisher M K, Heinze J R, Harris C D, et al. Optimizing horizontal completion techniques in the Barnett shale using microseismic fracture mapping[C]//The SPE Annual Technical Conference and Exhibition. Houston: SPE, 2004:1-11. [百度学术]