摘要
随着多分支水平井及复杂结构井钻井技术的不断发展,井眼清洁技术面临着新的困难和挑战。如何解决复杂地质条件与复杂井型条件下的岩屑床问题,对于判断与处理井下复杂情况是当前钻井工程面临的重要科学问题之一。通过岩屑颗粒受力分析建立了岩屑运移环空临界流速模型;基于室内可视化岩屑运移实验,探究了岩屑运移影响规律。结果表明:井斜角为36°时岩屑临界启动速度最大,携岩最为困难;模型预测结果与实验结果吻合度较好,且基于实例井的预测结果与现场作业情况一致,验证了所建模型的可靠性。该研究可为大位移大井斜井及水平井井眼清洁提供理论依据和技术支持。
随着化石能源钻采条件日益苛刻与钻采工艺不断开发,为实现资源的高效开采,多分支水平井、大位移大井斜井钻井技术成为海洋油气田开发、老油田增产稳产、低渗煤层气开发、煤矿水害治理等的重要技术手
近些年,国内外学者们对大斜度、大位移井及水平井的井眼清洁问题做了大量的研究。由于环空岩屑运移机理复杂,影响因素众多,研究方法各异,评价标准不一,总结下来,实验法、分层模型法、临界流速法是3种较为常见的研究方法。实验法多以岩屑床厚度或岩屑浓度为评价指
基于岩屑受力分析,本文建立了岩屑运移临界流速计算模型;通过斜井段及水平井段岩屑运移实验,重点探究偏心环空钻柱旋转下岩屑粒径、钻井液流变性能、井斜角及排量等钻井参数对岩屑运移的影响规律,并验证模型的可靠性。成果可为合理设计大位移大井斜井及水平井钻井参数提供参考。
沉积岩屑床表面颗粒在环空井眼中的受力如

图1 岩屑颗粒受力
Fig.1 Lithic particle force
(1)净重力
(1) |
式中:——岩屑颗粒的直径,m;——岩屑颗粒密度,kg/
(2)举升力
钻井液在x方向上不均匀分布引起的压力梯度力对附近岩屑产生举升力,方向垂直于y向指向井眼轴线,表达式为:
(2) |
的计算公式如下:
(3) |
(4) |
(5) |
式中:——举升力系数,采用Ei-Samni和Einstein(1949年)给出的计算公式;——岩屑移动速度,m/s;——钻井液表观粘度,mPa·s。
(3)举升力
钻柱旋转引起钻井液在垂直于井眼轴线平面内做圆周运动,从轴心至井壁处,由于流速不均匀分布的压力梯度力,对岩屑产生上举力,其方向指向轴线方向。
(6) |
式中:——钻井液在垂直于井眼平面内流速沿x方向不均匀分布引起的举升力系数;——钻柱旋转引起的岩屑中心处钻井液圆周方向流速,m/s。
(4)拖曳力
(7) |
的计算采用Ford
(8) |
(9) |
(10) |
式中:——拖拽力系数;——钻井液速度,m/s。
(5)压力梯度力
(11) |
式中:——环空钻井液流动压力梯度,Pa/m。
(6)粘结力
岩屑颗粒长时间在钻井液中浸泡,表面存在一层微薄的附着层,导致床面颗粒与接触颗粒之间存在粘结力作用,表达式为:
(12) |
式中:——岩屑床面的颗粒的干密度,kg/
(7)塑性力
由岩屑下方静止钻井液的屈服应力产生,垂直指向井眼低边,表达式为:
(13) |
式中:——钻井液屈服应力,Pa。
为进一步探究岩屑在井眼倾斜段及水平段的运移规律,基于岩屑运移机理设计并建立可视化岩屑运移模拟装置(如

图3 岩屑运移模拟装置
Fig.3 Experimental apparatus for cuttings migration
实验选用黄原胶(XC)与羧甲基纤维素(CMC)加水混合,配制聚合物钻井液体系;选取1~5 mm系列的模拟岩屑,密度为2.6 g/c
参数项 | 参数值 |
---|---|
环空尺寸/mm | 60(°) |
模拟井筒长度/mm | 3500 |
偏心度/(°) | 0.5 |
钻井液表观粘度/(mPa·s) | 0~20 |
钻杆转速/(r·mi | 0~200 |
岩屑粒径/mm | 1~5 |
岩屑注入密度/% | 1 |
井斜角/(°) | 0~90 |
环空井眼中,当钻井液环空流速低于岩屑临界启动速度时,岩屑保持静止形成固定岩屑床。增加环空流速可使岩屑颗粒拖曳力不断增大,当其大于岩屑流动阻力时,岩屑开始运移。在滑移(

图4 环空岩屑颗粒运移轨迹
Fig.4 Orbital cuttings particle transport trajectory

图5 环空岩屑床演变过程
Fig.5 The evolution of annular cuttings bed

图6 不同钻井液环空返速对岩屑床厚度的影响
Fig.6 Cutting‑bed thickness for different drilling mud velocity
钻井液流变性能是影响定向井井眼清洁效果极为重要的因素,也是一种可控因素,其中钻井液表观粘度对岩屑运移临界环空流速的影响见

图7 不同钻井液粘度下岩屑临界启动速度
Fig.7 Critical transport velocity of drill cuttings at different drilling mud viscosities

图8 不同井斜角下岩屑临界运移速度
Fig.8 Critical transport velocity of drill cuttings at different well slope angles
当井斜角为0°,钻井液表观粘度为15 mPa·s时,岩屑粒径与岩屑运移临界环空流速的关系曲线如

图9 不同岩屑粒径的临界运移速度
Fig.9 Initiation transport velocity of different drill cuttings particle sizes
为验证环空岩屑临界速度模型的可靠性,将模型计算结果与实验结果进行对比。如

图10 临界环空流速模型与实验结果对比
Fig.10 Comparison of computing results and
experimental results of critical annular velocity
选取淮南煤层顶板分段压裂新谢-1L井进行实例计算,该井钻至1061 m时的现场实钻数据如
工况 | 参数 | |
---|---|---|
井深设计 | 钻头直径/mm | 311.1 |
钻杆直径/mm | 127 | |
套管直径/mm | 244.5 | |
水平井段长/mm | 2607 | |
钻屑 |
密度/(g·c | 2~3 |
粒径/mm | 4.1 | |
钻井液性能 |
密度/(g·c | 1.3~1.45 |
粘度/s | 65~70 | |
失水量/mL | <4 | |
动切力/Pa | 9 | |
钻进参数 |
机械钻速/(m· | 22 |
排量/(L· | 40~48 | |
井斜角/(°) | 65~88 |
利用岩屑运移的临界环空流速对上述条件的井眼工况进行分析,不同井深处岩屑运移所需临界排量计算如

图11 新谢-1L井计算排量与实际排量对比
Fig.11 Calculated versus actual mud displacement of Xinxie-1L wells
通过岩屑颗粒受力分析建立了岩屑运移环空临界流速模型,结合室内模拟实验,探究了环空返速、钻井液流变性能、岩屑粒径及井斜角对环空岩屑运移的影响规律,得到如下结论:
(1)环空岩屑颗粒在运移过程中以滑移、滚动、跳跃与层移这4种运动形式相互转变。
(2)增大环空钻井液流速,岩屑床厚度减小,适量提高钻井液粘度有利于提高携岩效果,利于井眼清洁。而相较于大粒径岩屑,小颗粒岩屑更易形成岩屑床,其岩屑运移临界速度更高。
(3)实验发现,当井斜角为30°~40°,岩屑运移临界速度曲线存在拐点,约为36°时,岩屑临界启动速度最大,携岩最为困难。
(4)所建立的多分支水平井段岩屑动态运移模型计算结果与实验结果吻合度较好,并与现场作业情况一致,验证了该模型的可靠性。
参考文献(References)
李瑞刚,张洪宁,刘湘华,等.顺北56X特深水平井定向钻井关键技术[J].钻探工程,2023,50(2):58-64. [百度学术]
LI Ruigang, ZHANG Hongning, LIU Xianghua, et al. Key technology for extra‑deep horizontal directional drilling of Well Shunbei 56X[J]. Drilling Engineering, 2023,50(2):58-64. [百度学术]
侯岳,刘春生,刘聃,等.海域天然气水合物浅软地层水平井钻井液技术[J].钻探工程,2022,49(2):16-21. [百度学术]
HOU Yue, LIU Chunsheng, LIU Dan, et al. Drilling fluid technology for natural gas hydrate horizontal wells in marine shallow soft formation[J]. Drilling Engineering, 2022,49(2):16-21. [百度学术]
吴华,刘连恺,王磊,等.GY5-1-4H页岩油水平井提高固井质量关键技术研究与实践[J].钻探工程,2023,50(4):135-141. [百度学术]
WU Hua, LIU Liankai, WANG Lei, et al. Study and application of key technology enhancement of shale oil horizontal well cementing quality for Well GY5-1-4H[J]. Drilling Engineering, 2023,50(4):135-141. [百度学术]
李奎.泸州深层页岩气水平段钻井提速关键技术[J].钻探工程,2022,49(5):100-105. [百度学术]
LI Kui. Key technologies for improving deep shale gas horizontal drilling ROP in Luzhou[J]. Drilling Engineering, 2022,49(5):100-105. [百度学术]
孙凯,刘化伟,明鑫,等.自201井区页岩气井水平段安全高效钻井技术[J].钻探工程,2022,49(2):104-109. [百度学术]
SUN Kai, LIU Huawei, MING Xin, et al. Safe and high‑efficiency drilling technology for horizontal sections of shale gas wells in Well Block Zi-201[J]. Drilling Engineering, 2022,49(2):104-109. [百度学术]
蒋太平,李果民,姚战利,等.苏14-19-34井组水平井轨迹控制技术研究与应用[J].钻探工程,2021,48(8):19-25. [百度学术]
JIANG Taiping, LI Guomin, YAO Zhanli, et al. Research and application of horizontal well trajectory control technology in the Su 14-19-34 well group[J]. Drilling Engineering, 2021,48(8):19-25. [百度学术]
刘江,石逊,王雷浩,等.煤矿采矿区区域治理水平井施工中托压问题的研究与实践[J].钻探工程,2023,50(3):145-151. [百度学术]
LIU Jiang, SHI Xun, WANG Leihao, et al. Research and practice on backing pressure in horizontal well construction for regional treatment in coal mining areas[J]. Drilling Engineering, 2023,50(3):145-151. [百度学术]
周守为,孙福街,曾祥林,等.稠油油藏分支水平井适度出砂开发技术[J].石油勘探与开发,2008,206(5):630-635. [百度学术]
ZHOU Shouwei, SUN Fujie, ZENG Xianglin, et al. Application of multilateral wells with limited sand production to heavy oil reservoirs[J]. Petroleum Exploration and Development, 2008,206(5):630-635. [百度学术]
高德利.大型丛式水平井工程与山区页岩气高效开发模式[J].天然气工业,2018,38(8):1-7. [百度学术]
GAO Deli. A high‑efficiency development mode of shale gas reservoirs in mountainous areas based on large cluster horizontal well engineering[J]. Natural Gas Industry, 2018,38(8):1-7. [百度学术]
张遂安,刘欣佳,温庆志,等.煤层气增产改造技术发展现状与趋势[J].石油学报,2021,42(1):105-118. [百度学术]
ZHANG Suian, LIU Xinjia, WEN Qingzhi, et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica, 2021,42(1):105-118. [百度学术]
张永平,杨延辉,邵国良,等.沁水盆地樊庄-郑庄区块高煤阶煤层气水平井开采中的问题及对策[J].天然气工业,2017,37(6):46-54. [百度学术]
ZHANG Yongping, YANG Yanhui, SHAO Guoliang, et al. Problems in the development of high‑rank CBM horizontal wells in the Fanzhuang-Zhengzhuang Block in the Qinshui Basin and countermeasures[J]. Natural Gas Industry, 2017,37(6):46-54. [百度学术]
Shi Yanping, Chen Shuya, Yang Xianyu, et al. Enhancing wellbore stability of coal measure strata by electrical inhibition and wettability control[J]. Journal of petroleum science and engineering, 2019,174:544-552. [百度学术]
郑士田.两淮煤田煤层底板灰岩水害区域超前探查治理技术[J].煤田地质与勘探,2018,46(4):142-146. [百度学术]
ZHENG Shitian. Advanced exploration and control technology of limestone water hazard in coal seam floor in Huainan and Huaibei coalfields[J]. Coal Geology & Exploration, 2018,46(4):142-146. [百度学术]
郝登峰,徐影,郭增付.煤矿水害治理多分支水平井精准定导向技术研究[J].钻探工程,2023,50(1):125-132. [百度学术]
HAO Dengfeng, XU Ying, GUO Zengfu. Research on precise directional drilling technology for multi‑branch horizontal wells in coal mine water hazard control[J]. Drilling Engineering, 2023,50(1):125-132. [百度学术]
张菲菲,王茜,余义兵,等.长水平井中动态井眼清洁对钻柱受力影响研究进展[J].中国科学基金,2021,35(6):1006-1012. [百度学术]
ZHANG Feifei, WANG Xi, YU Yibing, et al. Research progress on influence of dynamic hole cleaning on drill string stress in long horizontal wells[J]. Bulletin of National Natural Science Foundation of China, 2021,35(6):1006-1012. [百度学术]
Xue Man, Dai Zhaokai, Li Zhi, et al. Environmentally friendly comprehensive recycling utilization technology of foundation engineering slurry[J]. Construction and Building Materials, 2023,368:130400. [百度学术]
闫雪峰.大直径非开挖水平定向钻岩屑运移规律研究[D].武汉:中国地质大学,2018. [百度学术]
YAN Xuefeng. Study on cuttings transportation of large diameter horizontal directional drilling[D]. Wuhan: China University of Geosciences, 2018. [百度学术]
汤捷.水平井岩屑颗粒启动及运移规律研究[D].大庆:东北石油大学,2019. [百度学术]
TANG Jie. Study on initiation and migration of particles on cuttings bed in horizontal wells[D]. Daqing: Northeast Petroleum University, 2019. [百度学术]
易静.斜井段及水平井段岩屑运移规律实验及数值模拟研究[D].成都:西南石油大学,2015. [百度学术]
YI Jing. Experiment and numerical simulation study on rock chip migration law in inclined well section and horizontal well section[D]. Chengdu: Southwest Petroleum University, 2015. [百度学术]
Wei Na, Meng Yingfeng, Li Gao, et al. Cuttings Transport Models and Experimental Visualization of Underbalanced Horizontal Drilling[J]. Mathematical Problems in Engineering, 2013:764782. [百度学术]
汪海阁,刘希圣,李洪乾,等.水平井段钻井液携带岩屑的实验研究[J].石油学报,1995,16(4):125-132. [百度学术]
WANG Haige, LIU Xisheng, LI Hongqian, et al. Experimental study on cuttings transportation by drilling fluid in horizontal well section[J]. Acta Petrolei Sinica, 1995,16(4):125-132. [百度学术]
周风山,蒲春生.水平井偏心环空中岩屑床厚度预测研究[J].石油钻探技术,1998,26(4):19-21. [百度学术]
ZHOU Fengshan, PU Chunsheng. Prediction study on the thickness of aerial debris beds in eccentric rings of horizontal wells[J]. Petroleum Drilling Techniques, 1998,26(4):19-21. [百度学术]
相恒富,孙宝江,李昊,等.大位移水平井段岩屑运移实验研究[J].石油钻采工艺,2014,36(3):1-6. [百度学术]
XIANG Hengfu, SUN Baojiang, LI Hao, et al. Experimental research on cuttings transport in extended‑reach horizontal well[J]. Oil Drilling & Production Technology, 2014,36(3):1-6. [百度学术]
郭晓乐,汪志明,龙芝辉.大位移钻井全井段岩屑动态运移规律[J].中国石油大学学报(自然科学版), 2011,35(1):72-76. [百度学术]
GUO Xiaole, WANG Zhiming, LONG Zhihui. Transient cuttings transport laws through all sections of extended reach well[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011,35(1):72-76. [百度学术]
祝效华,刘少胡,童华.气体钻井钻杆冲蚀规律研究[J].石油学报,2010,31(6):1013-1017. [百度学术]
ZHU Xiaohua, LIU Shaohu, TONG Hua. A study on the drill pipe erosion law in gas drilling[J]. Acta Petrolei Sinica, 2010,31(6):1013-1017. [百度学术]
宋先知,李根生,王梦抒,等.连续油管钻水平井岩屑运移规律数值模拟[J].石油钻探技术,2014,42(2):28-32. [百度学术]
SONG Xianzhi, LI Gensheng, WANG Mengshu, et al. Numerical simulation on cuttings carrying regularity for horizontal wells drilled with coiled tubing[J]. Petroleum Drilling Techniques, 2014,42(2):28-32. [百度学术]
邵兵,闫怡飞,毕朝峰,等.基于CFD-DEM耦合模型的大粒径非常规岩屑颗粒运移规律研究[J].科学技术与工程,2017,17(27):190-195. [百度学术]
SHAO Bing, YAN Yifei, BI Chaofeng, et al. Migration of irregular cuttings particles in big size by CFD-DEM coupled simulation model[J]. Science Technology and Engineering, 2017,17(27):190-195. [百度学术]
Cheng Rongchao, Wang Ruihe. A three-segment hydraulic model for annular cuttings transport with foam in horizontal drilling[J]. Journal of hydrodynamics, 2008,20(1):67-73 [百度学术]
王金堂,孙宝江,李昊,等.大位移水平井钻井岩屑速度分布模拟分析[J].水动力学研究与进展A辑,2014,29(6):739-748. [百度学术]
WANG Jintang, SUN Baojiang, LI Hao, et al. Simulation analysis of cuttings velocity distribution in extended horizontal well drilling[J]. Chinese Journal of Hydrodynamics, 2014,29(6):739-748. [百度学术]
孙晓峰,闫铁,王克林,等.复杂结构井井眼清洁技术研究进展[J].断块油气田,2013,20(1):1-5. [百度学术]
SUN Xiaofeng, YAN Tie, WANG Kelin, et al. Research progress of hole cleaning in complex structure well[J]. Fault-Block Oil & Gas Field, 2013,20(1):1-5. [百度学术]
孙晓峰,纪国栋,王克林,等.大斜度井偏心环空钻柱旋转对岩屑运移的影响[J].特种油气藏,2015,22(6):133-136. [百度学术]
SUN Xiaofeng, JI Guodong, WANG Kelin, et al. Effect of drill string rotation in eccentric annulus of high angle deviated well on cuttings movement[J]. Special Oil & Gas Reservoirs, 2015,22(6):133-136. [百度学术]
朱娜,黄文君,高德利.复杂工况下大位移井岩屑运移与参数优化研究[J].石油机械,2022,50(8):24-32. [百度学术]
ZHU Na, HUANG Wenjun, GAO Deli. Cuttings migration and parameter optimization of extended reach wells under complex working conditions[J]. China Petroleum Machinery, 2022,50(8):24-32. [百度学术]
王震,崔景川,彭文波,等.水平定向钻隧道地质勘察孔岩屑运移与地层相关性研究[J].地质科技通报,2022,41(6):331-338. [百度学术]
WANG Zhen, CUI Jingchuan, PENG Wenbo, et al. Correlation study of cuttings and formation during tunnel geological investigation using HDD technology[J]. Bulletin of Geological Science and Technology, 2022,41(6):331-338. [百度学术]
宋洵成,管志川,陈绍维.斜井岩屑运移临界环空流速力学模型[J].中国石油大学学报(自然科学版),2009,33(1):53-56. [百度学术]
SONG Xuncheng, GUAN Zhichuan, CHEN Shaowei. Mechanics model of critical annular velocity for cuttings transportation in deviated well[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009,33(1):53-56. [百度学术]
张好林,李根生,王伟,等.水平井井筒清洁临界流速简化模型[J].钻采工艺,2014,37(4):5-8. [百度学术]
ZHANG Haolin, LI Gensheng, WANG wei, et al. Simplified model of critical fluid velocity for hole cleaning of horizontal well[J]. Drilling & Production Technology, 2014,37(4):5-8. [百度学术]
陈修平,王明波,仲冠宇.大斜度井段小尺寸岩屑临界再悬浮速度力学模型[J].断块油气田,2013,20(4):498-501. [百度学术]
CHEN Xiuping, WANG Mingbo, ZHONG Guanyu. Mechanics model of critical re-suspension velocity for small-sized cuttings transportation in hole section with high inclination[J]. Fault-Block Oil & Gas Field, 2013,20(4):498-501. [百度学术]
董长银,邓珊,李爱萍,等.大斜度井筒条件下沉积砂床表面颗粒起动临界条件研究[J].石油钻探技术,2010,38(3):22-26. [百度学术]
DONG Changyin, DENG Shan, LI Aiping, et al. Research of critical condition for grains at bed surface in highly deviated wells[J]. Petroleum Drilling Techniques, 2010,38(3):22-26. [百度学术]
Lin Penghao, Zheng Yunlong, Wu Xiaoming. Influencing Factors of the Wellbore Cleaning Efficiency in Extended Reach Wells Based on Seawater Drilling Fluid[J]. Arabian journal for science and engineering, 2021,46(7):6979-6988. [百度学术]
Ford J, Gao E, Oyeneyin M B, et al. The development of mathematical models with describe cuttings transport in inclined boreholes[J]. CADE/CAODC, 1993:93-1102. [百度学术]