摘要
天然气水合物是一种储量巨大的固态清洁能源,因此被认为是传统化石燃料的接替能源而备受关注。由于其赋存于低温、高压的海洋及冻土环境中,采用经济、高效的方法将天然气从天然气水合物储层中开采出来是实现天然气水合物商业开采的关键。根据实验室研究、数值模拟和现场试验等方面的研究现状,本文分析了降压法、注热法、注化学抑制剂法、CO2置换法、联合法等方法的开采效果,并对各种方法的优点和局限性进行了论述。已有的开采方法主要受到储层渗透率低、导热性能差等限制,未能实现长期连续产气。针对以上问题,提出储层原位电阻加热法提高热利用率;并认为水力压裂増透技术是提高储层渗透率以辅助降压法等开采方法实现高效产气的一种有效措施;关于水合物开采可能导致储层失稳等问题,认为利用CO2置换法可以加固储层,并且通过超临界CO2喷射技术能够提高CO2置换率。
能源对社会发展和经济增长至关重
NGH主要是由水和甲烷等气体在高压、低温条件下形成的一种外表类似冰状固

图1 NGH储层赋存环
Fig.1 Occurrence environment of NGH reservoir
根据NGH赋存条件,目前已有开采方法主要通过改变NGH温压环境状态、打破相平衡条件使NGH分解从而实现天然气的开采,如

图2 水合物赋存状态相平衡曲
Fig.2 Hydrate phase equilibrium curve

图3 开采方法示
Fig.3 Schematic diagram of exploitation methods
降压法只需通过抽气、排水降低储层压力使NGH分解产出气体;注热法是向NGH储层注入热量,NGH吸热分解实现气体产出;注抑制剂法通过井筒向NGH储层注入化学抑制剂,改变NGH本身性质,在原有的赋存环境中实现分解产气;气体置换法以CO2置换为主,利用CO2置换出NGH中CH4分子,从而实现开采。至今,共有82个国家进行了关于NGH研究,除实验室、数值模拟研究外,一些国家开展了现场试开采研究,如
位置区域 | 储层特性 | 试采年份 | 方法 | 时间 | 产气量/ | |||
---|---|---|---|---|---|---|---|---|
岩性 | 渗透率/mD | 饱和度/% | 孔隙度/% | |||||
俄罗斯, Messoyakha | 冻土区沙砾层 | 125 | 40 | 16~38 | 1972—1989 | 降压,注化学剂 | 断续生产17年 | 36%来于水合物分解气 |
加拿大Mackenzie River Delta, Mallik site | 冻土区沙砾层 | 未知 | 47 | 29.3 | 2002 | 注热盐水,降压 | 125 h | 516 |
2007 | 降压,注热 | 12.5 h | 830 | |||||
2008 | 降压 | 139 h | 13000 | |||||
Alaska北坡, Ignik Sikumi | 冻土区沙砾层 | 1700 | 60~75 | 40 | 2012 |
CO2置换法 CO2/N2(23/77%) | 6 d | 24085 |
日本Nankai Trough, Margin of the Daini | 海洋中粗砂储层 | 1000 | 60 | — | 2013 | 降压 | 6 d | 119500 |
2017(1次) | 12 d | 35000 | ||||||
2017(2次) | 24 d | 240000 | ||||||
中国南海北部,神狐海域 | 非成岩泥质粉砂 | 0.2~20 | 30~50 | — | 2017 | 降压(地层流体抽取法)、固态流化法 | 60 d | 309000 |
中国南海北部,神狐海域 | 非成岩泥质粉砂 | 0.2~20 | 30~50 | — | 2019-2020 | 降压(定向井) | 30 d | 861400 |
尽管NGH的开发已经取得了相当大的进展,但关于NGH开采方法的研究主要处于实验室实验阶段,并且大多数NGH现场开采实验都只实现了短期产气,因此这些开采方法还远未达到商业化开采要
目前,在天然气水合物的开采方法研究中,降压方法通过降低含NGH多孔介质储层的孔隙压力,使其低于NGH相平衡压力,从而迫使NGH分解产气以维持储层内部压
降压法产气过程可分快速产气、缓慢产气和停止产气三个阶段。一般认为降压速率和压差是前两个阶段的主要控制因素,降压速率快且降压差越大,NGH分解产气越
实验室尺度实验及数值模拟研究表明,降压法能够实现连续产气直至反应釜中的NGH基本完全分
为了验证降压法在现场尺度的开采效果,许多学者进行了现场尺度数值模拟开采研
NGH以固态形式赋存于储层空隙中,目前主流的开采技术是通过将NGH在储层原位分解为天然气之后,再输送至地面。对于NGH以颗粒充填和胶结状态赋存的NGH储层,NGH可视为组成储层骨架的一部
从降压法开采效果可知,实现NGH商业化开采需要解决降压法中储层及周围环境传热不足,导致NGH分解产气速率快速衰减较快、分解不完全等问题。于是提供额外热量促进NGH分解的方法被提出来。目前,这种方法主要包括注热蒸汽法和注热水或盐水法。
注热蒸汽法最初是被用于稠油开采中,在NGH开采中,利用热蒸汽容易在NGH储层孔、裂中流动和快速进行热传递的特点,提供额外的热驱动力促进NGH分解,从而提高NGH分解率及产气速率,同时还能有效避免二次水合物生成和孔隙水结冰现
之后,许多学者对注热蒸汽法进行了能效分析,希望获得较优的注热时间和注入温度。但是热蒸汽通过管道注入NGH储层过程中由于热蒸汽温度与周围环境温度差异较大,不可避免的造成较为严重的热损,导致开采能效过低;特别是对于厚度<15 m的NGH储层,虽然能够实现NGH快速分解产气、提高NGH分解效率,但是从获得能量方面考虑远达不到商业开采要
注热蒸汽法在获得能量效率方面无法满足商业开采要求,随后另一种注入热介质促进开采的方法——注热水法得到广泛研究。与注热蒸汽法不同,热水中热量不易被分解气体稀释,热对流效应更加明显,并且相对于热蒸汽,热水更易获
此外,井筒布置方式也对注热水法有较大影响。通过水平井注入热水时,由于井筒影响范围较垂直井大,且在重力作用下,热水在NGH储层内作用范围较垂直井广;并且如果采用双井布置,将注热井设置在开采井之上,更有利于获得更佳的能量效
井筒电加热法是通过利用对安设在井筒内储层段的电阻通电进行电加热的原理向储层提供能量,该方法能够有效克服注热流体存在的问题,同时避免了携带热量的介质在传输过程中的热量损
开采方法 | 热效率 |
---|---|
注热水法 | 0.4~0.6 |
注热蒸汽法 | 0.2~0.4 |
井筒电加热法 | 0.4~0.6 |
为了避免储层低传热率对开采的影响,一部分学者提出一种利用微波促进NGH分解的方法。该方法利用NGH可以吸收微波的特性,使其在微波辐射作用下分解。并且NGH储层中不同构成组分对微波吸收能力有很大差异,不同结构升温特性不同,导致天然气储层中产生热应力,形成微裂缝,从而增加储层渗透率,有利于提高开采速
在储层原位进行加热的思想下,借鉴石油开采中已经应用的通过加入酸性、碱性溶液,并与压裂液混合,产生大量气态流体和热量的自发热压裂技术,一些学者提出化学试剂原位自生热法开采NG
注抑制剂最初用于防止输油管道内生成NGH造成管道堵塞。在NGH开采中,注抑制剂法是通过向储层注入抑制剂的方式改变NGH相平衡条件以实现NGH开采的一种方
热力学抑制剂(包括NaCl、CaCl2、MeOH、EtOH和MEG)可以有效地降低NGH的相平衡条件,人为地控制水合物的分解速
动力学抑制剂是一种主要成分为乙烯基内酰胺单体的聚合物,它通过吸附在NGH表面延迟NGH的成核和生长过
目前,热力学抑制剂和动力学之间的协同抑制是一个新的研究热点,通过两种类型抑制剂协同作用,可以增加抑制NGH形成时间,降低使用热力学抑制剂的成
气体置换法是通过向储层中注入以CO2为主的置换气体置换出NGH中甲烷的一种开采方法。CO2水合物比NGH在热力学上更稳定,置换反应是一个放热过程,其释放的热量能促进NGH进一步分
置换率和置换速率是影响CO2置换法开采NGH最为关键的两个因素,研究表明,置换率和置换速率受到各种因素的显著影响,包括置换气体组成成分、储层含水率、NGH颗粒的比表面积、储层的温度和压力条件以及储层的渗透率
CO2注入NGH储层发生置换反应涉及两种反应形式,第一种形式是CO2直接进入NGH笼中挤出原本在笼中的甲烷分子,置换过程中NGH不分解产生游离水;第二种形式主要反应过程为NGH的分解产生气体和游离水,CO2注入后再进入空笼中形成CO2水合
再者,井筒中注入的CO2温度、压力等注入参数可能对其置换速率有较大影响。向井筒中注入CO2气体的注入参数对CO2气体在近井筒周围生成CO2水合物的速度具有决定性影响,近井筒周围高速的CO2生成速率必然导致井筒附近储层渗透率降低,不利于CO2气体向储层深部扩
目前关于NGH开采方法研究的主流是在降压法的基础上,通过不同的辅助热激方式提高NGH分解、产气速率,指在将热量科学合理、方便高效地注入储层并均匀加热,使NGH在压差驱动力与热驱动力双重驱动作用下分解、产气,获得更高能量效率。
注入热流体联合降压的开采方法在双重驱动力作用下能够促进NGH分解,提高产气速率,但是仍然存在热量在井筒及储层传输过程中的能量损失;并且,注热流体联合降压法开采效果也受到储层渗透率的影响,导致热流体传递范围有
联合法目前面临的主要问题包括储层低渗透率的限制,导致热流体作用范围较小;储层低导热系数导致原位井筒加热法联合降压法热量传递范围受限。因此,在降压作用下,一种既能不受储层低渗透率影响又能快速、大范围地将能量地传递到储层内,使NGH在双重驱动力作用下分解,以获得高能量效率的方法是实现NGH商业化开采的关键。
目前主要的开采方法包括注抑制剂法、气体置换法、降压法、注热流体法(热水或蒸汽法)、井筒电加热法、联合开采法。各主要开采方法开采效率对比如
开采方法 | 能量效率 | |
---|---|---|
降压法 | 2.0~4.0 | |
热激法 | 注热水法 | 0.8~1.5 |
注热蒸汽法 | 0.5~1.0 | |
井筒电加热法 | 0.5~1.0 | |
化学试剂原位自生热法 | 0.6~1.2 | |
注抑制剂法 | 1.0~1.8 | |
CO2置换法 | 1.5~2.5 |
从额外提供NGH分解所需热量促进产气角度出发,由于现有的热激方式仍很难满足NGH工业化开发需求,需进一步研究高效加热NGH储层的方法,强化降压过程中NGH分解。在污染土壤修复等领域,存在一种以欧姆定律为基础,直接利用地层电阻特性,向地层通电将电能转化为热能以实现对地层加热的地层原位电阻加热技术,该技术可将地层原位加热至100 ℃以
另外,由于储层渗透率是导致各类开采方法无法获得较优开采速率及能量效率的最为关键的因素之一,可从提高储层渗透率出发提高开采效果。水力压裂技术最初用于石油及天然气开采领域,通过从地面将高压压裂液注入低渗油、气储层中,将地层中已有缝隙压开产生裂隙以达到增加渗透率的目的。已有研究提出可采用水力压裂方式将高压液体注入NGH储层中,以提高储层渗透率,再采用各种开采方法进行NGH开采,从而获得高产气率及能量效
水力压裂技术未将拟开采储层整体破碎使NGH分解后再将沙粒回填,因此与固态流化法相比,水力压裂技术对储层的改造程度相对较轻,但是不可避免改变了NGH储层内部应力状态,可能造成NGH储层失稳。此外,压裂液配方较为复杂,压裂液组成成分的选择对NGH储层压裂效果以及环境都会造成较大影响;并且压裂液中含有较大浓度的化学抑制剂成分(中KCl、MgCl2、CaCl2和NH4Cl等),对NGH相平衡造成一定影响。因此,还需要深入研究注入液体压力、注液时间、压裂液成分与用量,以及对注入压裂液及NGH分解过程中储层受力状态进行分析,保证高效、安全开采。
超临界CO2喷射技术已被证明具有高流动性和破岩性能。在此启发下,可利用超临界CO2喷射技术,将高压液态CO2注入NGH储层中,以增大储层渗透率,使得CO2能够扩散至储层深处,并且增大CO2与NGH接触面积,从而提高CO2置换效率和置换率。该方法促进开采效果以及对储层稳定性的影响程度需要进行进一步的研究。
参考文献(References)
Zastempowski M. Analysis and modeling of innovation factors to replace fossil fuels with renewable energy sources: Evidence from European Union enterprises[J]. Renewable and Sustainable Energy Reviews, 2023,178:113262. [百度学术]
Castellani B, Nicolini A. Special issue “Analysis and experimental study on natural gas hydrate exploitation processes”[J]. Processes, 2023,11(3):727. [百度学术]
Wu W Q, Hao B H, Guo Y Y, et al. Application of monocyclic compounds as natural gas hydrate promoters: A review[J]. Chemical Engineering Research and Design, 2023,190:66-90. [百度学术]
Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016,162:1633-1652. [百度学术]
年廷凯,宋晓龙,张浩,等.水合物注热开采影响下海底斜坡动态稳定性评价[J].岩土工程学报,2022,44(12):2167-2176. [百度学术]
NIAN Tingkai, SONG Xiaolong, ZHANG Hao, et al. Dynamic stability evaluation of submarine slopes with hydrate reservoir under influences of heat injection exploitation[J]. Chinese Journal of Geotechnical Engineering, 2022,44(12):2167-2176. [百度学术]
雍宇,史博会,丁麟,等.水合物生成诱导期研究进展[J].化工进展,2018,37(2):505-516. [百度学术]
YONG Yu, SHI Bohui, DING Lin, et al. Research progress of hydrate formation induction time[J]. Chemical Industry and Engineering Progress, 2018,37(2):505-516. [百度学术]
闫柯乐,任悦萌,林雨.含动力学抑制剂体系甲烷水合物稳定性及分解行为研究[J].石油化工,2022,51(12):1432-1437. [百度学术]
YAN Kele, REN Yuemeng, LIN Yu. Experimental study on the stability and dissociation behavior of methane hydrate in the presence of kinetic inhibitor[J]. Petrochemical Technology, 2022,51(12):1432-1437. [百度学术]
孙建业,业渝光,刘昌岭,等.沉积物中天然气水合物减压分解实验[J].现代地质,2010,24(3):614-621. [百度学术]
SUN Jianye, YE Yuguang, LIU Changling, et al. Experimental research of gas hydrate dissociation in sediments by depressurization method[J]. Geoscience, 2010,24(3):614-621. [百度学术]
肖钢,白玉湖.天然气水合物勘探开发关键技术研究[M].武汉:武汉大学出版社,2015. [百度学术]
XIAO Gang, BAI Yuhu. Research on key technologies for exploration and development of natural gas hydrates[M]. Wuhan: Wuhan University Press , 2015. [百度学术]
孙建业.海洋沉积物中天然气水合物开采实验研究[D].青岛:中国海洋大学,2011. [百度学术]
SUN Jianye. Experimental research of gas hydrates exploitation in marine sediments[D]. Qingdao: Ocean University of China, 2011. [百度学术]
王斌.天然气水合物降压开采特性及效率优化研究[D].大连:大连理工大学,2019. [百度学术]
WANG Bin. Study on mining characteristics and efficiency optimization of naturel gas hydrate resources via depressurization[D]. Dalian: Dalian University of Technology, 2019. [百度学术]
Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018,1(1):5-16. [百度学术]
Ye J L, Qin X W, Xie W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020,3(2):197-209. [百度学术]
Sun S C, Gu L L, Yang Z D, et al. Gas hydrate dissociation by depressurization along with ice occurrence and sand migration[J]. Journal of Natural Gas Science and Engineering, 2023,109:104853. [百度学术]
齐赟,孙友宏,李冰,等.近井储层改造对天然气水合物藏降压开采特性影响的数值模拟研究[J].钻探工程,2021,48(4):85-96. [百度学术]
QI Yun, SUN Youhong, LI Bing, et al. Numerical simulation of the influence of reservoir stimulation in the near wellbore area on the depressurization production characteristics of natural gas hydrate reservoir[J]. Drilling Engineering, 2021,48(4):85-96. [百度学术]
Feng J C, Li G, Li X S, et al. Evolution of hydrate dissociation by warm brine stimulation combined depressurization in the South China sea[J]. Energies, 2013,6(10):5402-5425. [百度学术]
Li S X, Li S, Zheng R Y, et al. Strategies for gas production from Class 2 hydrate accumulations by depressurization[J]. Fuel, 2021,286:119380. [百度学术]
Liang Y P, Tan Y T, Luo Y J, et al. Progress and challenges on gas production from natural gas hydrate‑bearing sediment[J]. Journal of Cleaner Production, 2020,261:121061. [百度学术]
Xiao C W, Li X S, Li G, et al. Key factors controlling the kinetics of secondary hydrate formation in the porous media[J]. Journal of Natural Gas Science and Engineering, 2023,110:204911. [百度学术]
Li B, Liang Y P, Li X S, et al. A pilot‑scale study of gas production from hydrate deposits with two‑spot horizontal well system[J]. Applied Energy, 2016,176:12-21. [百度学术]
Zheng R Y, Li S X, Li X L. Sensitivity analysis of hydrate dissociation front conditioned to depressurization and wellbore heating[J]. Marine and Petroleum Geology, 2018,91:631-638. [百度学术]
Wan Q C, Si H, Li B, et al. Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization[J]. Applied Energy, 2020,278:115612. [百度学术]
Li L J, Li X S, Wang Y, et al. Analyzing the applicability of in situ heating methods in the gas production from natural gas hydrate‑bearing sediment with field scale numerical study[J]. Energy Reports, 2020,6:3291-3302. [百度学术]
Ruan X K, Song Y C, Zhao J F, et al. Numerical simulation of methane production from hydrates induced by different depressurizing approaches[J]. Energies, 2012,5(2):438-458. [百度学术]
Liu S Y, Li H Y, Wang B, et al. Accelerating gas production of the depressurization‑induced natural gas hydrate by electrical heating[J]. Journal of Petroleum Science and Engineering, 2022,208:109735. [百度学术]
Ruan X K, Yang M J, Song Y C, et al. Numerical studies of hydrate dissociation and gas production behavior in porous media during depressurization process[J]. Journal of Natural Gas Chemistry, 2012,21(4):381-392. [百度学术]
Ruan X K, Li X S, Xu C G. A review of numerical research on gas production from natural gas hydrates in China[J]. Journal of Natural Gas Science and Engineering, 2021,85:103713. [百度学术]
Fang B, Ning F L, Ou W J, et al. The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs: A molecular dynamics simulation study[J]. Fuel, 2019,258:116106. [百度学术]
Moridis G J, Reagan M T, Queiruga A F, et al. System response to gas production from a heterogeneous hydrate accumulation at the UBGH2-6 site of the Ulleung basin in the Korean East Sea[J]. Journal of Petroleum Science and Engineering, 2019,178:655-665. [百度学术]
高永海,尹法领,张党生,等.水合物储层水平井钻井井筒-储层耦合模型与井壁稳定性分析[J].石油学报,2023,44(7):1151-1166. [百度学术]
GAO Yonghai, YIN Faling, ZHANG Dangsheng, et al. Wellbore‑reservoir coupling model and borehole stability analysis of horizontal well drilling in hydrate reservoirs[J]. Acta Petrolei Sinica, 2023,44(7):1151-1166. [百度学术]
郭旭洋,金衍,卢运虎,等.海域天然气水合物降压开采诱发储层力学性质劣化及沉降规律建模研究[J].钻探工程,2023,50(6):27-36. [百度学术]
GUO Xuyang, JIN Yan, LU Yunhu, et al. A modeling analysis of depressurization‑induced mechanical property deterioration and subsidence in Marine natural gas hydrate‑bearing reservoirs[J]. Drilling Engineering, 2023,50(6):27-36. [百度学术]
蒋亚峰,田英英,李小洋,等.基于cohesive单元海域天然气水合物储层水力压裂模拟[J].钻探工程,2023,50(1):18-25. [百度学术]
JIANG Yafeng, TIAN Yingying, LI Xiaoyang, et al. Numerical simulation of hydrate reservoir hydraulic fracturing based on cohesive units[J]. Drilling Engineering, 2023,50(1):18-25. [百度学术]
Sun J X, Ning F L, Lei H W, et al. Wellbore stability analysis during drilling through Marine gas hydrate‑bearing sediments in Shenhu area: A case study[J]. Journal of Petroleum Science and Engineering, 2018,170:345-367. [百度学术]
Rutqvist J, Moridis G J, Grover T, et al. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate‑bearing sediments[J]. Journal of Petroleum Science and Engineering, 2012,92-93:65-81. [百度学术]
Zhao J, Shi D, Zhao Y. Mathematical model and simulation of gas hydrate reservoir decomposition by depressurization[J]. Oil & Gas Science and Technology, 2012,67(3):379-385. [百度学术]
Zhong X P, Pan D B, Zhai L H, et al. Evaluation of the gas production enhancement effect of hydraulic fracturing on combining depressurization with thermal stimulation from challenging ocean hydrate reservoirs[J]. Journal of Natural Gas Science and Engineering, 2020,83:103621. [百度学术]
Tsimpanogiannis I N, Lichtner P C. Parametric study of methane hydrate dissociation in oceanic sediments driven by thermal stimulation[J]. Journal of Petroleum Science and Engineering, 2007,56(1/3):165-175. [百度学术]
Wan T, Wang X J, Jing Z Y, et al. Gas injection assisted steam huff‑n‑puff process for oil recovery from deep heavy oil reservoirs with low‑permeability[J]. Journal of Petroleum Science and Engineering, 2020,185:106613. [百度学术]
An S H, Van S L, Chon B H. Production characteristics of gas hydrate reservoirs associated with steam injection and depressurization rate[J]. International Journal of Oil Gas and Coal Technology, 2018,19(3):296-315. [百度学术]
Kawamura T, Ohtake M, Sakamoto Y, et al. Experimental study on steam injection method using methane hydrate core samples[C]//Paper presented at the Seventh ISOPE Ocean Mining Symposium, Lisbon, Portugal, 2007:ISOPE-M-07-024. [百度学术]
Li X S, Yang B, Li G, et al. Experimental study on gas production from methane hydrate in porous media by huff and puff method in Pilot-Scale Hydrate Simulator[J]. Fuel, 2012,94:486-494. [百度学术]
吕丽新,陈永进,张硕,等.冻土区天然气水合物基本特征及国内研究现状[J].资源与产业,2012,14(5):69-75. [百度学术]
LÜ Lixin, CHEN Yongjin, ZHANG Shuo, et al. Characteristics and research advances of natural gas hydrate in permafrosts[J]. Resources & Industries, 2012,14(5):69-75. [百度学术]
Huang M, Zhao Z R, Su D C, et al. Improving the production performance of Low‑Permeability natural gas hydrate reservoirs by radial water jet slotting and grouting in a horizontal well[J]. Energy & Fuels, 2023,37(11):7715-7727. [百度学术]
Sun H R, Chen B B, Zhu Z Y, et al. Research development in the traditional methods and water flow erosion for natural gas hydrate production: A review[J]. Energy Technology: Generation, Conversion, Storage, Distribution, 2023,11(1):2201011. [百度学术]
Guo X W, Wang J Y, Wangji, et al. Effect of thermal properties on the production behavior from water‑saturated methane hydrate‑bearing sediments using depressurization[J]. Energy Procedia, 2019,158:5453-5458. [百度学术]
Li S X, Cao W, Li J, et al. Experimental study on thermal front movement of natural gas hydrate by injecting hot water[J]. Geoscience, 2014,28(3):659-662. [百度学术]
Feng J C, Wang Y, Li X S, et al. Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot‑scale hydrate simulator[J]. Applied Energy, 2015,145:69-79. [百度学术]
Guo B Y, Shan L Q. Heat transfer in counter‑current two phase flow applied to feasibility study of harvesting natural gas from seabed hydrates[J]. International Journal of Heat and Mass Transfer, 2018, 126: 603-612. [百度学术]
Moridis G J, Collett T S, Dallimore S R, et al. Numerical studies of gas production from several CH4‑hydrate zones at the Mallik Site, Mackenzie Delta, Canada[J]. Journal of Petroleum Science and Engineering, 2004,43(3/4):219-238. [百度学术]
He J, Li X S, Chen Z Y, et al. Combined styles of depressurization and electrical heating for methane hydrate production[J]. Applied Energy, 2021,282:116112. [百度学术]
刘姝.降压联合原位电加热开采天然气水合物研究[D].重庆:重庆大学,2021. [百度学术]
LIU Shu. Study on natural gas hydrate exploitation by depressurization combined with in‑situ electric heating[D]. Chongqing: Chongqing University, 2021. [百度学术]
Song Y C, Cheng C X, Zhao J F, et al. Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods[J]. Applied Energy, 2015,145:265-277. [百度学术]
Chen C, Meng Y L, Zhong X P, et al. Research on the influence of injection‑production parameters on challenging natural gas hydrate exploitation using depressurization combined with thermal injection stimulated by hydraulic fracturing[J]. Energy & Fuels, 2021,35(19):15589-15606. [百度学术]
Fakher S, Abdelaal H, Elgahawy Y, et al. Increasing production flow rate and overall recovery from gas hydrate reservoirs using a combined steam Flooding‑Thermodynamic inhibitor technique[C]//Paper presented at the SPE Trinidad and Tobago Section Energy Resources Conference, Port of Spain, Trinidad and Tobago, 2018:SPE-191179-MS. [百度学术]
Li B, Liu S D, Liang Y P, et al. The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media[J]. Applied Energy, 2018,227: 694-702. [百度学术]
Liang D Q, He S, Li D L. Effect of microwave on formation/decomposition of natural gas hydrate[J]. Chinese Science Bulletin, 2009,54(6):965-971. [百度学术]
He S, Liang D Q, Li D L, et al. Experimental investigation on the dissociation behavior of methane gas hydrate in an unconsolidated sediment by microwave stimulation[J]. Energy & Fuels, 2011,25(1):33-41. [百度学术]
Zhao J F, Fan Z, Wang B, et al. Simulation of microwave stimulation for the production of gas from methane hydrate sediment[J]. Applied Energy, 2016,168:25-37. [百度学术]
Liu S, Zhang Y Y, Luo Y J, et al. Analysis of hydrate exploitation by a new in‑situ heat Generation method with chemical reagents based on heat utilization[J]. Journal of Cleaner Production, 2020,249:119399. [百度学术]
张洋洋.自生热开采天然气水合物的实验研究[D].重庆:重庆大学,2019. [百度学术]
ZHANG Yangyang. Experimental study on gas production from hydrate reservoir using self‑heating system injection method[D]. Chongqing: Chongqing University, 2019. [百度学术]
张永田,陈晨,马英瑞,等.注入甲醇抑制剂法开采神狐海域天然气水合物数值模拟研究[J].钻探工程,2023,50(5):101-108. [百度学术]
ZHANG Yongtian, CHEN Chen, MA Yingrui, et al. Numerical simulation of gas hydrate exploitation in the Shenhu Sea area by injecting methanol inhibitor[J]. Drilling Engineering, 2023,50(5):101-108. [百度学术]
Singh A, Suri A. A review on gas hydrates and kinetic hydrate inhibitors based on acrylamides[J]. Journal of Natural Gas Science and Engineering, 2020,83:103539. [百度学术]
Liu Y, Duan J T, Xu D Q, et al. Inhibiting effect of a composite formulation of kinetic and thermodynamic inhibitors for gas hydrate formation in high water cut oil‑water emulsion[J]. Energy Science and Engineering, 2023,11(7):2302-2313. [百度学术]
樊栓狮,王燕鸿,郎雪梅.天然气水合物动力学抑制技术研究进展[J].天然气工业,2011,31(12):99-109. [百度学术]
FAN Shuanshi, WANG Yanhong, LANG Xuemei. Research progress on kinetic inhibition technology of natural gas hydrates[J]. Natural Gas Industry, 2011,31(12):99-109. [百度学术]
Lee S S, Park J, Se Y, et al. Thermoresponsive microcarriers for smart release of hydrate inhibitors under shear flow[J]. ACS Applied Materials & Interfaces, 2017,9(20):17178-17185. [百度学术]
Reza K H, Jinhai Y H, Bahman T. Integrated near infrared and ultraviolet spectroscopy techniques for determination of hydrate inhibitors in the presence of nacl[J]. Industrial & Engineering Chemistry Research, 2018,57(34):11728-11737. [百度学术]
Shahnazar S, Bagheri S, Termehyousefi A, et al. Structure, mechanism, and performance evaluation of natural gas hydrate kinetic inhibitors[J]. Reviews in Inorganic Chemistry, 2018,38(1):1-19. [百度学术]
Sharifi H, Ripmeester J, Englezos P. Recalcitrance of gas hydrate crystals formed in the presence of kinetic hydrate inhibitors[J]. Journal of Natural Gas Science and Engineering, 2016, 35:1573-1578. [百度学术]
Gulbrandsen A C, Svartaas T M. The effect of Poly Vinyl Caprolactam concentration on dissociation temperature for methane hydrates[J]. Energy & Fuels, 2017,31(8):8505-8511. [百度学术]
Gulbrandsen A C, Svartas T M. Effects of PVCap on gas hydrate dissociation kinetics and the thermodynamic stability of the hydrates[J]. Energy & Fuels, 2017,31(9):9863-9873. [百度学术]
Kang H, Koh D Y, Lee H E. Nondestructive natural gas hydrate recovery driven by air and Carbon dioxide[J]. Scientific Reports, 2014,4:6616. [百度学术]
Kim K, Truong‑Lam H S, Lee J D, et al. Facilitating clathrate hydrates with extremely rapid and high gas uptake for chemical‑free Carbon capture and methane storage[J]. Energy, 2023,270:126902. [百度学术]
Mozaffar H, Anderson R, Tohidi B. Effect of alcohols and diols on PVCap‑induced hydrate crystal growth patterns in methane systems[J]. Fluid Phase Equilibria, 2016,425:1-8. [百度学术]
张学民,张山岭,李鹏宇,等.多孔介质中CO2-CH4水合物置换的影响因素及强化机理研究进展[J].化工进展,2022,41(10):5259-5271. [百度学术]
ZHANG Xuemin, ZHANG Shanling, LI Pengyu, et al. Research progress on influencing factors and strengthening mechanism of CO2-CH4 hydrate replacement in porous media system[J]. Chemical Industry and Engineering Progress, 2022,41(10):5259-5271. [百度学术]
Sun S C, Gu L L, Yang Z D, et al. Hydrate formation from CO2 saturated water under displacement condition[J]. Renewable and Sustainable Energy Reviews, 2023,179:113293. [百度学术]
王敏,徐刚,蔡晶,等.“CH4-CO2”置换法开采天然气水合物[J].新能源进展,2021,9(1):62-68. [百度学术]
WANG Min, XU Gang, CAI Jing, et al. Research progress on the micro‑mechanism and efficiency of CH4-CO2 Replacement and extraction of CH4 hydrate[J]. Advances in New and Renewable Enengy, 2021,9(1):62-68. [百度学术]
张炜,刘伟,谢黎.天然气水合物开采技术——CO2-CH4置换法最新研究进展[J].中外能源,2014,19(4):23-27. [百度学术]
ZHANG Wei, LIU Wei, XIE Li. Latest advance in CO2-CH4 displacement technology for producing natural gas hydrate [J]. Sino‑Global Energy, 2014,19(4):23-27. [百度学术]
Gambelli A M. An experimental description of the double positive effect of CO2 injection in methane hydrate deposits in terms of climate change mitigation[J]. Chemical Engineering Science, 2021,233:116430. [百度学术]
Zhang Y L, Cui M, Xin G M. Microscopic insights on the effects of flue gas components on CH4-CO2 replacement in natural gas hydrate[J]. Gas Science and Engineering, 2023,112:204947. [百度学术]
Hyodo M, Li Y H, Yoneda J, et al. A comparative analysis of the mechanical behavior of Carbon dioxide and methane hydrate‑bearing sediments[J]. American Mineralogist, 2014,99(1):178-183. [百度学术]
Wang X H, Sun Y F, Wang Y F, et al. Gas production from hydrates by CH4-CO2/H2 replacement[J]. Applied Energy, 2017,188:305-314. [百度学术]
Jia W L, Song S S, Li C J, et al. Predictions on CH4 recovery factors using the CO2 replacement method to develop natural gas hydrate resources[J]. Journal of CO2 Utilization, 2020,41:101238. [百度学术]
Su Z, Moridis G J, Zhang K N, et al. A huff‑and‑puff production of gas hydrate deposits in Shenhu area of South China Sea through a vertical well[J]. Journal of Petroleum Science and Engineering, 2012,86-87:54-61. [百度学术]
Liang Y P, Liu S, Zhao W T, et al. Effects of vertical center well and side well on hydrate exploitation by depressurization and combination method with wellbore heating[J]. Journal of Natural Gas Science and Engineering, 2018,55:154-164. [百度学术]
Wang Y, Feng J C, Li S X. Experimental investigation of influence of well spacing on hydrate dissociation by heat stimulation in sandy sediment[J]. Energy Procedia, 2019,158:5699-5704. [百度学术]
Wang Y, Feng J C, Li X S, et al. Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas‑saturated and water‑saturated hydrate reservoirs[J]. International Journal of Heat and Mass Transfer, 2018,118:1115-1127. [百度学术]
Dubey S, Gurjar P, Kumar U, et al. Elucidating the impact of thermodynamic hydrate inhibitors and kinetic hydrate inhibitors on a complex system of natural gas hydrates: application in flow assurance[J]. Energy & Fuels, 2023,37(9):6533-6544. [百度学术]
詹明秀,刘立朋,顾海林,等.原位热修复过程中土壤内热质传递研究现状与展望[J].环境工程学报,2022,16(4):1272-1283. [百度学术]
ZHAN Mingxiu, LIU Lipeng, GU Hailin, et al. Recent advances and prospects of heat and mass transfer in soil during in-situ thermal remediation[J]. Chinese Journal of Environmental Engineering, 2022,16(4):1272-1283. [百度学术]