摘要
随着我国油气对外依存度逐渐加剧,致密油气、页岩油气等非常规油气能源成为了我国能源发展的重点方向。井工厂压裂技术因其可以改造低渗透性地层、大幅降低施工成本、缩短施工周期、提高设备利用率、节约用地而被广泛应用于非常规油气开发之中。本文在论述井工厂压裂技术发展现状的基础上,介绍了丛式水平井的井筒走向、水平段长度、井筒间距等井网部署特点,统计分析了水平井分段分簇的裂缝长度、簇间距和射孔簇数等关键技术参数特点;介绍了丛式水平井井工厂压裂常用的压裂方式,包括双井同步压裂、双井拉链式压裂和多井组合压裂等,对比分析了各种压裂方式的利弊。建议有针对性的发展立体井网井间裂缝干扰预测、井丛压裂孔簇设计等理论,为我国非常规油气储层井工厂压裂技术发展指明了方向。
致密油气、页岩油气储层通常具有低孔低渗特点,水平钻井和水力压裂技术是开发此类储层的两大核心技术。随着水力压裂技术在非常规油气储层的大规模应用,当位于一个区块的多口井需要压裂时,每口井分别进行压裂设备搬迁、安装和压裂液配备,不但会延长工期也会增加生产成本。加拿大能源公司最先提出了井工厂水力压裂技术,并被用于北美页岩气开发,目前已经形成了一套较为成熟的开发模
中国也广泛地采用井工厂压裂技术,长宁地区龙马溪组页岩气采用拉链式压裂改造模式,完成2个水平井组7口井的压裂实践,较单独压裂作业效率提高1
与传统的单井压裂作业相比,井工厂压裂技术优化了施工模式和顺序,一方面其提高了设备利用率,减少了搬迁与安装时间;另一方面,方便回收和处理井下压裂
近些年,井工厂压裂技术得到了较大的发展,包括:丛式水平井井网布置、段簇优化设计、多级压裂、同步压裂、拉链压裂、多井组合压裂等。笔者对井工厂压裂技术的特点和现状进行了分析,并阐述了相关技术的应用情况,以期促进中国井工厂压裂技术的发展。
丛式水平井井网部署(

图1 井工厂井网空间布
Fig.1 Space layout of well pattern in well factory
水力裂缝一般会垂直于最小水平主地应力方向延伸,但由于钻井技术和工程地质条件限制,水平井往往会与最小水平主应力方向成一定角度(见
区块 | 储层岩性 | 最小水平地 应力方向/(°) | 井筒方位/(°) | 最小水平地应力与水平段角度/(°) |
---|---|---|---|---|
苏53气田区 | 石英砂岩 | 330~350 | 347 | -3~17 |
塔里木哈拉哈塘油田区 | 缝洞型碳酸盐岩 | 10~20 | 16.52 | -3.48~6.52 |
大牛地气田DP4 | 岩屑石英砂岩 | 165 | 156 | -9 |
吉林油田长平3 | 致密砂岩 | 267 | 260 | -7 |
鄂尔多斯盆地庆城油田H100平 | 细砂岩、粉砂岩、页岩 | 340~350 | 339.25 | -0.75~10.75 |
长水平段水平井是以大限度暴露储层为目的,通过增加储层与井筒的接触达到高产的一种井型。对于非裂缝性油藏,水平井产能可高达直井的3倍;对于裂缝性油藏,水平井产能可高达直井的12倍;对于超低渗油藏,长水平段的水平井也可以大幅度提高油气采收率。2018年,北美的水平段长度极限达到6340
水平井需要根据矿场情况、油藏特征、经济性的因素,选取合理长
区块 | 储层岩性 | 开钻年份 | 水平段长度/m |
---|---|---|---|
苏里格气 | 石英砂岩 | 2010 | 805~1256 |
大牛地气田盒1 | 岩屑石英砂岩 | 2012 | 1239.5(平均) |
加拿大Duvernay页岩油 | 海相页岩、泥质灰岩 | 2012—2018 | 1300→3000 |
Range公司二叠系盆 | — | 2012—2018 | 951.89→3088.54 |
Haynesville页岩气 | 碳酸盐、泥岩 | 2009—2016 | 1350→2155 |
威204页岩气井 | 深水陆棚、钙质浅水陆棚页岩 | 2016—2020 | 1506→1965 |
鄂尔多斯盆地庆城油田H100平台 | 细砂岩、粉砂岩、页岩 | 2021 | 1900~3000 |
注: →表示在年份区间内水平段长度变化。
井工厂裂缝扩展与干扰规律是水平井压裂的难题,目前裂缝干扰研究主要集中在裂缝间影响,关于井间距对裂缝扩展干扰研究不足。井间距是控制储层改造效果和优化井产能的关键,应在合理井间干扰范围内降低井工厂井间
区块 | 储层岩性 | 井间距/m | 平台井数/口 |
---|---|---|---|
中国蜀南地 | 深水陆棚页岩 | 400~500 | — |
涪陵页岩气地 | 深水陆棚页岩 | 300~740 | 7~8 |
长宁-威远页岩气区块PT2平 | 深水陆棚、钙质浅水陆棚页岩 | 200~400 | 6 |
准噶尔盆地昌吉油 | 泥岩、砂砾岩 | 310~350 | 7~12 |
鄂尔多斯盆地庆城油田H100平台 | 细砂岩、粉砂岩、页岩 | 175~350 | 31 |
Utica页岩气 | 陆表海页岩 | 259~366 | — |
Bakken页岩气 | 黑色泥页岩 | 302~402 | 8~17 |
Eagle Ford页岩 | 泥灰岩、灰质页岩 | 60~150 | — |
北美页岩气田(平均 | — | 180~420 | 16~20 |
页岩油气、致密油气储层的水平井水平段一般长达数千米,储层改造时需将水平段划分为多个井段,每个井段含有多个射孔簇,形成了水平井多段多簇压裂改造技术。
日产量通常随着水力裂缝长度的增加而增高,但是增加的幅度不断下降,因此存在最佳裂缝长度,其受到压裂方法、地应力分布、水平井分布的影响,在最佳裂缝长度后增产效果和压裂投入不成正
对于单口水平井压裂,当裂缝半长沿水平井分布为两端长中间短情况时(见

图2 裂缝长度沿井筒分布规律
Fig.2 Distribution law of fracture length along wellbore
对于单个压裂段而言,U形布缝外侧裂缝较长,控制范围较大,中间裂缝对于产量影响较少。数值模拟表明,U形布缝累计产能>反U形布缝累计产能>锯齿形布缝累计产能(见

图3 布缝方式
Fig.3 Fracture arrangement
对于多井压裂,在设计井间距与裂缝长度时应考虑压裂过程中井间裂缝互相干扰的影响,使得相邻井裂缝内部的压裂液互相沟通而支撑剂未沟通的程度,有效利用井间应力干扰使裂缝复杂
国内外对于裂缝间距与缝长设计时,大多采用等间距和缝长,且在产能预测的时候进行一定简化与近似,考虑井间干扰与缝间干扰较少,与现场的实际情况存在一定差距。
簇间距对油气产能影响较大,通常随着簇间距增大,井间干扰减小,单裂缝产量增高,但是总体经济效益较低。裂缝间距越小,缝间应力干扰严重,但储层沟通更为充分,初期产能较
当采用非均匀簇间距设计时,不同的裂缝间距组合对水平井产量影响很大。采用两侧裂缝间距较小,而井筒中部裂缝间距较大的时候,产能明显优于其他情况,这是因为水平井两端裂缝渗流控制区域大于井中间段的控制区域(见

图4 簇间距沿井筒分布规律
Fig.4 Distribution law of cluster spacing along wellbore
裂缝间距设计一般基于整体经济效益评价、产能模拟最大化的结
区块 | 年份 | 簇间距/m |
---|---|---|
Midland Basi | 2010—2017 | 16.7→7.6 |
长宁页岩 | 2014—2019 | 27→16 |
鄂尔多斯盆地庆城油田H100平台 | 2021 | 8~20 |
Eagle For | 2014—2017 | 16.7→4 |
威页X-4HF页岩气 | 2020 | 8.4~9.9 |
Permian Basi | — | 16→4.5 |
注: →表示在年份区间内簇间距变化。
在使用水力压裂技术改造油气储层的过程中,通常在一个水平压裂段中使用多个射孔簇去降低单口井的总压裂段数。但是由于1/3的压裂簇无效,因此,应合理的设计簇数与单个段长。
在簇间距一致的条件下,簇数越多产生的无效裂缝越多,产量越低;需要在单段内尽量选岩性及力学性质相似的井段布置射孔簇。射孔簇位置应以地质甜点为前提,优选段内岩性、物性、脆性、地应力差异性较小的区域,尽量选择天然裂缝发育的区域,避免对产层、非产层段同时射孔。在压裂实践中,应由简单的追求压裂波及体积转变为在有限的波及内尽可能提高体积裂缝密度,由井控储量模式转变为缝控储量模式,增加产
区块 | 储层岩性 | 分段段长/m | 单段簇数 |
---|---|---|---|
Permian Basin页岩气区 | 硅质页岩 | 90~108→30~35 | 平均3→平均10 |
Bakken页岩气区 | 黑色泥页岩 | 70~105 | 6~15 |
加拿大Duvernay页岩气 | 海相页岩、泥质灰岩 | 平均90→平均49 | 6~7 |
长宁-威远国家级页岩 | 深水、浅水陆棚页岩 | 17.49~50.26 | — |
吉木萨尔页岩 | 灰色泥岩、夹砂质泥岩 | 60~90 | 5~12 |
鄂尔多斯盆地庆城油田 | 细砂岩、粉砂岩、页岩 | 15~50 | 3~5 |
注: →表示该区块变化趋势。
井工厂常见的压裂方式为双井同步压裂、双井拉链式压裂和多井组合压裂等。
同步压裂技术(见

图5 双井同步压裂(压裂顺序如图中1→5)
Fig.5 Dual‑well simultaneous fracturing (fracturing sequence as 1→5)
同步压裂技术在美国Barnett页岩气井开发得到了广泛应用,显著提高了页岩气井的产
双井拉链式压裂即在多井平台上一口井进行压裂作业,一口井进行电缆桥塞射孔作业,两口井交替压裂,同时在另外一口井中下入裂缝监测设备实时监测裂缝参数,可以降低非生产时间。详细作业即对于1、2两口井进行拉链压裂作业,电缆等设备在1、2井中交替使用同时完成下桥塞和坐封作业,在压裂其他井时1、2井进行钻磨桥塞等其他作业,而后在都完成钻磨桥塞等作业后统一放喷排液。拉链压裂产生的微地震事件明显多于单井压裂产生的微地震事件,丛式井平台拉链式压裂可以大幅度改造储层达到增产的目的,同时采用拉链式压裂井间的应力干扰有利于裂缝发生转向生成更好的裂缝网
传统的双井拉链式压裂(见

图6 双井拉链压裂(压裂顺序如图中1→10)
Fig.6 Dual‑well zipper fracturing (fracturing sequence as 1→10)
传统拉链式压裂虽然可以减小水平应力各向异性,但是实际操作过于复杂,改进的拉链式压裂(见

图7 改进的双井拉链压裂(压裂顺序如图中1→9)
Fig.7 Improved dual‑well zipper fracturing (fracturing sequence as 1→9)
2013年,中国石油首次应用拉链式压裂技术对长宁平台进行页岩气工厂化压裂,平均每天压裂3.16段,极大地提高了压裂时
在多井压裂中,如果两口井产生的应力正面相交则可能导致应力抵消,减缓裂缝的延伸,而当斜向相交情况下,可以通过剪切形成新的裂缝,促进压裂的效
在多井组合压裂中拉链压裂较为流行,即一口井进行泵送,另外一口井进行电缆作业,减少了压裂过程中的停机时间,提高了作业效率。通常情况下,一次压裂作业的井不超过4口,单层3口井拉链压裂按照是否考虑中间井筒的延后可以分为两

图8 单层3口井拉链压裂
Fig.8 Zipper fracturing of three wells in single formation

图9 单层3口井拉链压裂(中间井筒延后)
Fig.9 Zipper fracturing of three wells in single formation (with intermediate shaft lag)
单层4口井拉链压裂按照相邻井分组和间隔井分组可分为两

图10 单层4口井拉链压裂(间隔井为一组)
Fig.10 Zipper fracturing of four wells in single formation (spaced wells are grouped)

图11 单层4口井拉链压裂(相邻井为一组、且从井场边缘向内压裂)
Fig.11 Zipper fracturing of four wells in single formation (adjacent wells are grouped together and fractured inwards from the edge of the well site)
常规的3、4口井的拉链压裂方式更容易使得产生的水力裂缝向着天然存在的薄弱面靠近,增加了裂缝之间的干扰程度,限制了新的裂缝的产生数量,而中间井筒延后和由边缘向内压裂的拉链压裂方式(参见图
当井场处于较厚储层或多个储层时,通常需要采用多层立体开发压裂,各产层产生的裂缝应该控制在各自附近位置,防止裂缝窜到相邻产层;可以在满足“W”型布井基础上,压裂中采用交叉的原则,从上到下再从上到下,降低裂缝间互相干扰,提高井网开采效

图12 上、下两层拉链压裂示意
Fig.12 Diagram of zipper fracturing in upper and lower strata
(1)目前井工厂水力压裂井网布置主要采用丛式水平井布置,其主体思路为:井筒与最小水平主应力平行或小角度相交,使得裂缝近似于垂直井筒,最大可能扩大裂缝接触面积;选取经济合理的水平段长度,增大储层与井筒接触面积;合理布置井筒间距与平台井数,达到既可以充分动用储层又不会产生单井覆盖面积重叠的问题。目前大平台、大井丛已经成为了一种开发趋势。
(2)在水平井多段多簇压裂作业中,宜采用两端长中间短的裂缝长度布置方式。目前的分段分簇原则主要为:单段内岩性、物性、主应力、脆性差异性较小,段内避免对于产层、非产层的同时射孔压裂改造;射孔簇选择以地质甜点为前提,优选段内岩性、地应力一致区域,合理降低裂缝间距使得簇间储层得到充分利用。目前在储层改造过程中单段簇数增多,簇间距缩短,即水平井分段压裂技术整体在合理范围内呈现加密切割储层的趋势。
(3)井工厂水力压裂相对于单口井压裂更加强调施工效率与相邻井筒的裂缝干扰,相比于顺序压裂、交替压裂,拉链压裂工艺可以提供较快施工速度、降低裂缝干扰,更适合井工厂压裂。
(4)针对目前对于井间裂缝扩展应力干扰研究较少;在对于井网设计时,裂缝间距和缝长存在部分简化与近似的问题,建议有针对性的发展立体井网井间裂缝干扰预测、井丛压裂孔簇设计理论。
参考文献(References)
张金成,孙连忠,王甲昌,等.“井工厂”技术在我国非常规油气开发中的应用[J].石油钻探技术,2014,42(1):20-25. [百度学术]
ZHANG Jincheng, SUN Lianzhong, WANG Jiachang, et al. Application of multi‑well pad in unconventional oil and gas development in China[J]. Petroleum Drilling Techniques, 2014,42(1):20-25. [百度学术]
王敏生,光新军.页岩气“井工厂”开发关键技术[J].钻采工艺,2013,36(5):1-4. [百度学术]
WANG Minsheng, GUANG Xinjun. Key technologies of shale gas development by “well factory”[J]. Drilling & Production Technology, 2013,36(5):1-4. [百度学术]
任勇,钱斌,张剑,等.长宁地区龙马溪组页岩气工厂化压裂实践与认识[J].石油钻采工艺,2015,37(4):96-99. [百度学术]
REN Yong, QIAN Bin, ZHANG Jian, et al. Practice and understanding of industrial fracturing for shale gas of Longmaxi Formation in Changning region[J]. Oil Drilling & Production Technology, 2015,37(4):96-99. [百度学术]
马新华,谢军.川南地区页岩气勘探开发进展及发展前景[J].石油勘探与开发,2018,45(1):161-169. [百度学术]
MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018,45(1):161-169. [百度学术]
肖佳林,李奎东,高东伟,等.涪陵焦石坝区块水平井组拉链压裂实践与认识[J].中国石油勘探,2018,23(2):51-58. [百度学术]
XIAO Jialin, LI Kuidong, GAO Dongwei, et al. Practice and cognition on zipper fracturing of horizontal well group in Jiaoshiba Block, Fuling[J]. China Petroleum Exploration, 2018,23(2):51-58. [百度学术]
赵明宸,徐赋海,姜亦栋,等.东辛油田盐227块致密砂砾岩油藏井工厂开发技术[J].油气地质与采收率,2014,21(1):103-106. [百度学术]
ZHAO Mingchen, XU Fuhai, JIANG Yidong, et al. Study and application on development technique for tight conglomerate reservoir, Yan227 block[J]. Petroleum Geology and Recovery Efficiency, 2014,21(1):103-106. [百度学术]
Naizhen L, Ming L. Well‑plant operation model: Case study of tight‑gas sands in Sulige Gas Field, NW China[C]//SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. OnePetro, 2015. [百度学术]
邹才能,丁云宏,卢拥军,等.“人工油气藏”理论,技术及实践[J].石油勘探与开发,2017,44(1):144-154. [百度学术]
ZOU Caineng, DING Yunhong, LU Yongjun, et al. Concept, technology and practice of “man‑made reservoirs” development[J]. Petroleum Exploration and Development, 2017,44(1):144-154. [百度学术]
曲占庆,赵英杰,温庆志,等.水平井整体压裂裂缝参数优化设计[J].油气地质与采收率,2015,19(4):106-110. [百度学术]
QU Zhanqing, ZHAO Yingjie, WEN Qingzhi, et al. Fracture parameters optimization in integral fracturing of horizontal well[J]. Petroleum Geology and Recovery Efficiency, 2015,19(4):106-110. [百度学术]
叶成林.苏里格气田水平井参数优化及效果评价——以苏53区块为例[J].石油天然气学报,2012,34(01):107-110. [百度学术]
YE Chenglin. Parameter optimization and effect evaluation of horizontal wells in Sulige Gas Field: A case study of Block Su 53[J]. Journal of Oil and Gas Technology, 2012,34(1):107-110. [百度学术]
刘辉,袁学芳,文果,等.超深碳酸盐岩油藏水平井套管分段酸压技术实践[J].钻采工艺,2016,39(5):33-35,102. [百度学术]
LIU Hui, YUAN Xuefang, WEN Guo, et al. Practice of stage acid frac in cased horizontal well in ultradeep carbonate reservior[J]. Drilling & Production Technology, 2016,39(5):33-35,102. [百度学术]
邢景宝.大牛地气田水平井分段压裂技术研究与应用[J].钻采工艺,2011,34(2):25-28. [百度学术]
XING Jingbao. Fracturing technology for horizontal well in Daniudi Gas Field[J]. Drilling&Production Technology, 2011,34(2):25-28. [百度学术]
任广磊,周涌沂,陈奎,等.大牛地气田大98井区水平井开发技术政策研究[J].油气地质与采收率,2015,21(5):90-93. [百度学术]
REN Guanglei, ZHOU Yongyi, CHEN Kui, et al. Research on horizontal well development technology policy of Da98 well area in Daniudi Gas Field[J]. Petroleum Geology and Recovery Efficiency, 2015,21(5):90-93. [百度学术]
李金平.小井眼长水平段水平井摩阻扭矩分析方法研究[J].中外能源,2013,18(9):58-62 [百度学术]
LI Jinping. Research on analytical method of friction and torque for horizontal well with long slim‑hole horizontal section[J]. Sino‑Global Energy, 2013,18(9):58-62. [百度学术]
刘建,惠晨,樊建明,等.鄂尔多斯盆地合水地区长6致密砂岩储层现今地应力分布特征及其开发建议[J].地质力学学报,2021,27(1):31-39. [百度学术]
LIU Jian, HUI Chen, FAN Jianming, et al. Distribution characteristics of the present‑day in‑situ stress in the Chang 6 tight sandstone reservoirs of the Yanchang Formation in the Heshui Area, Ordos Basin, China and suggestions for development[J]. Journal of Geomechanics, 2021,27(1):31-39. [百度学术]
张家希,于家庆,何跃文,等.北美非常规油气超长水平井优快钻井技术及实例分析[J].钻探工程,2021,(8):1-11. [百度学术]
ZHANG Jiaxi, YU Jiaqing, HE Yuewen, et al. North America unconventional long lateral well fast‑drilling technology with case study[J]. Drilling Engineering, 2021,(8):1-11. [百度学术]
薛婷,黄天镜,成良丙,等.鄂尔多斯盆地庆城油田页岩油水平井产能主控因素及开发对策优化[J].天然气地球科学,2021,32(12):1880-1888. [百度学术]
XUE Ting, HUANG Tianjing, CHENG Liangbing, et al.Dominating factors on shale oil horizontal well productivity and development strategies optimization in Qingcheng Oilfield, Ordos Basin[J]. Natural Gas Geosicence, 2021,32(12):1880-1888. [百度学术]
陈志鹏,梁兴,王高成,等.旋转地质导向技术在水平井中的应用及体会——以昭通页岩气示范区为例[J].天然气工业,2015,35(12):64-70. [百度学术]
CHEN Zhipeng, LIANG Xing, WANG Gaocheng, et al. Application of rotary geosteering technology in horizontal wells and its implication: A case study of the Zhaotong shale gas demonstration area of Yunnan[J]. Natural Gas Industry, 2015,35(12):64-70. [百度学术]
Luo C, Jia A, Guo J, et al. Analysis on effective reservoirs and length optimization of horizontal wells in the Sulige Gasfield[J]. Natural Gas Industry B, 2016,3(3):245-252. [百度学术]
何世明,汤明,熊继有,等.小井眼长水平段水平井摩阻扭矩控制技术[J].西南石油大学学报(自然科学版),2015,37(6):85-92. [百度学术]
HE Shiming, TANG Ming, XIONG Jiyou, et al. Friction and torque control technology for slim and long horizontal well[J].Journal of Southwest Petroleum University (Science & Technology Edition), 2015,37(6):85-92. [百度学术]
陈作,何青,王宝峰,等.大牛地气田长水平段水平井分段压裂优化设计技术[J].石油钻探技术,2013,41(6):82-85. [百度学术]
CHEN Zuo, HE Qing, WANG Baofeng, et al. Design optimization of staged fracturing for long lateral horizontal wells in Daniudi Gas Field[J]. Petroleum Drilling Techniques, 2013,41(6):82-85. [百度学术]
李国欣,罗凯,石德勤.页岩油气成功开发的关键技术、先进理念与重要启示——以加拿大都沃内项目为例[J].石油勘探与开发,2020,47(4):739-749. [百度学术]
LI Guoxin, LUO Kai, SHI Deqin. Key technologies, engineering management and important suggestions of shale oil/gas development: Case study of a Duvernay shale project in Western Canada Sedimentary Basin[J]. Petroleum Exploration and Development, 2020,47(4):739-749. [百度学术]
Lu H, Zhang C, Yuan Z, et al. The strategy of production operation for extended lateral shale wells[C]. Proceedings of the SPE Annual Technical Conference and Exhibition, Calgary, Albeta, Canada, 2019. [百度学术]
Hammes U, Hamlin H S, Ewing T E J A B. Geologic analysis of the Upper Jurassic Haynesville Shale in east Texas and west Louisiana[J]. AAPG bulletin, 2011,95(10):1643-1666. [百度学术]
万玉金,何畅,孙玉平,等.Haynesville页岩气产区井位部署策略与启示[J].天然气地球科学,2021,32(2):288-297. [百度学术]
WAN Yujin, HE Chang, SUN Yuping, et al. Well deployment strategy and enlightenment of Haynesville shale gas play[J]. Natural Gas Geosicence, 2021,32(2):288-297. [百度学术]
邹才能,赵群,丛连铸,等.中国页岩气开发进展、潜力及前景[J].天然气工业,2021,41(1):1-14. [百度学术]
ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021,41(1):1-14. [百度学术]
叶海超,光新军,王敏生,等.美页岩油气低成本钻完井技术及建议[J].石油钻采工艺,2017,39(5):552-558. [百度学术]
YE Haichao, GUANG Xinjun, WANG Minsheng, et al. Low‑cost shale oil and gas drilling and completion technologies used in the North America and the suggestions[J]. Oil Drilling & Production Technology, 2017,39(5):552-558. [百度学术]
Zhu J, Forrest J, Xiong H, et al. Cluster spacing and well spacing optimization using multi‑well simulation for the lower Spraberry shale in Midland basin[C]. Proceedings of the SPE Liquids‑Rich Basins Conference‑North America, Midland, Texas, US, 2017. [百度学术]
严向阳,李楠,王腾飞,等.美国致密油开发关键技术[J].科技导报,2015,33(9):100-107. [百度学术]
YAN Xiangyang, LI Nan, WANG Tengfei, et al. Key technologies for tight oil development in the United States[J]. Science & Technology Review, 2015,33(9):100-107. [百度学术]
Gao S, Liu H, Ye L, et al. A new method for well pattern density optimization and recovery efficiency evaluation of tight sandstone gas reservoirs[J]. Natural Gas Industry B, 2020,7(2):133-140. [百度学术]
LI Guoxin, QIN Jianhua, XIAN Chenggang, et al. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development: A case study of the Mahu Oilfield, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020,47(6):1275-1290. [百度学术]
石林,张鲲鹏,慕立俊.页岩油储层压裂改造技术问题的讨论[J].石油科学通报,2020,5(4):496-511. [百度学术]
SHI Lin, ZHANG Kunpeng, MU Lijun. Discussion of hydraulic fracturing technical issues in shale oil reservoirs[J]. Petroleum Science Bulletin, 2020,5(4):496-511. [百度学术]
焦方正.页岩气“体积开发”理论认识、核心技术与实践[J].天然气工业,2019,39(5):1-14. [百度学术]
JIAO Fangzheng. Theoretical insights, core technologies and practices concerning “volume development” of shale gas in China[J]. Natural Gas Industry, 2019,39(5):1-14. [百度学术]
雍锐,常程,张德良,等.地质-工程-经济一体化页岩气水平井井距优化——以国家级页岩气开发示范区宁209井区为例[J].天然气工业,2020,40(7):42-48. [百度学术]
YONG Rui, CHANG Cheng, ZHANG Deliang, et al. Optimization of shale‑gas horizontal well spacing based on geology-engineering-economy integration: A case study of Well Block Ning209 in the National Shale Gas Development Demonstration Area[J]. Natural Gas Industry, 2020,40(7):42-48. [百度学术]
文乾彬,杨虎,石建刚,等.昌吉油田致密油长位移丛式水平井钻井技术[J].新疆石油地质,2014,35(3):356-360. [百度学术]
WEN Qianbin, YANG Hu, SHI Jiangang, et al. Drilling technology of large displaced cluster horizontal well for tight oil in Changji Oilfield, Junggar Basin[J]. XinJiang Petroleum Geology, 2014,35(3):356-360. [百度学术]
Craig Cipolla, Constance Gilbert, Aviral Sharma, et al. Case history of completion optimization in the Utica[C]. Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, Society of Petroleum Engineers, Texas, 2018. [百度学术]
丁麟,程峰,于荣泽,等.北美地区页岩气水平井井距现状及发展趋势[J].天然气地球科学,2020,31(4):559-566. [百度学术]
DING Lin, CHENG Feng, YU Rongze, et al. Current situation and development trend of horizontal well spacing for shale gas in North America[J]. Natural Gas Geosicence, 2020,31(4):559-566. [百度学术]
Hou L, Zou C, Yu Z, et al. Quantitative assessment of the sweet spot in marine shale oil and gas based on geology, engineering, and economics: A case study from the Eagle Ford Shale, USA[J]. Energy Strategy Reviews, 2021,38:100713. [百度学术]
Energy Information Administration, US Department of Energy. Review of emerging resources: US shale gas and shale oil plays[R]. 2011. [百度学术]
Hao MQ, Hu YL, et al. Predicting and optimising the productivity of multiple transverse fractured horizontal wells in ultra‑low permeability reservoirs[C]//International Petroleum Technology Conference, OnePetro, Beijing, 2013. [百度学术]
LI Longlong, YAO Jun, LI Yang, et al. Productivity calculation and distribution of staged multi‑cluster fractured horizontal wells[J]. Petroleum Exploration and Development, 2014,41(4):504-508. [百度学术]
王志平,朱维耀,高英,等.水平井-直井整体压裂组合井网产量预测模型的建立与应用[J].特种油气藏,2012,19(3):101-103. [百度学术]
WANG Zhiping, ZHU Weiyao, GAO Ying, et al. Establishment and application of recovery predictional model for integrally fractured pattern of horizontal‑vertical well[J]. Special Oil & Gas Reservoirs, 2012,19(3):101-103. [百度学术]
宋彦志,杨倩,任哲雨,等.页岩气藏压裂水平井产能计算及其影响因素[J].大庆石油地质与开发,2023,42(3):1-9. [百度学术]
SONG Yanzhi, YANG Qian, REN Zheyu, et al. Productivity calculation and its influencing factors of fractured horizontal well in shale gas reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2023,42(3):1-9. [百度学术]
李国欣,覃建华,鲜成钢,等.致密砾岩油田高效开发理论认识、关键技术与实践——以准噶尔盆地玛湖油田为例[J].石油勘探与开发,2020,47(6):1185-1197. [百度学术]
LI Guoxin, QIN Jianhua, XIAN Chenggang, et al. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development: A case study of the Mahu oilfield, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020,47(6):1185-1197. [百度学术]
蒋宝云,周玉龙,陈莉,等.滨425区块非均质油藏压裂裂缝参数优化[J].科学技术与工程,2021,21(22):9322-9329. [百度学术]
JIANG Baoyun, ZHOU Yulong, CHEN Li, et al. Optimization of fracture parameters for heterogeneous reservoir in B425 Block [J]. Science Technology and Engineering, 2021,21(22):9322-9329. [百度学术]
陈汾君,汤勇,刘世铎,等.低渗致密气藏水平井分段压裂优化研究[J].特种油气藏,2012,19(6):85-87. [百度学术]
CHEN Fenjun, TANG Yong, LIU Shiduo, et al. Study on the optimization of staged fracturing of a horizontal well in a tight gas reservoir with low permeability[J]. Special Oil & Gas Reservoirs, 2012,19(6):85-87. [百度学术]
Guo C, Wei M, Liu H. Study of gas production from shale reservoirs with multi‑stage hydraulic fracturing horizontal well considering multiple transport mechanisms[J]. PLoS One, 2018, 13(1):e0188480. [百度学术]
Cipolla CL, Lolon EP, Mayerhofer MJ, et al. Fracture design considerations in horizontal wells drilled in unconventional gas reservoirs[C]//SPE Hydraulic Fracturing Technology Conference, the Woodlands, USA, 2009. [百度学术]
吴百烈,周建良,曹砚锋,等.致密气水平井分段多簇压裂关键参数优选[J].特种油气藏,2016,23(4):127-130. [百度学术]
WU Bailie, ZHOU Jianliang, CAO Yanfeng, et al. Key parameter optimization of horizontal well multi‑stage multi‑cluster fracturing in tight gas reservoir[J]. Special Oil & Gas Reservoirs, 2016,23(4):127-130. [百度学术]
Ambrose R J, Hartman R C, Diaz‑Campos M, et al. New pore‑scale considerations for shale gas in place calculations[C]//SPE unconventional gas conference, Pittsbergh, Pa, 2010. [百度学术]
Marongiu‑Porcu M, Wang X, Economides M J. Delineation of application: Physical and economic optimization of fractured gas wells[C]//SPE Production and Operations Symposium, Oklahoma, 2009. [百度学术]
白晓虎,齐银,陆红军,等.鄂尔多斯盆地致密油水平井体积压裂优化设计[J].石油钻采工艺,2015,37(4):83-86. [百度学术]
BAI Xiaohu, QI Yin, LU Hongjun, et al. Optimization design for volume fracturing of horizontal wells in tight oil reservoir of Ordos Basin[J]. Oil Drilling & Production Technology, 2015,37(4):83-86. [百度学术]
贾长贵,路保平,蒋廷学,等.DY2HF深层页岩气水平井分段压裂技术[J].石油钻探技术,2014,42(2):85-90. [百度学术]
JIA Changgui, LU Baoping, JIANG Tingxue, et al. Multi‑stage horizontal well fracturing technology in Deep Shale Gas Well DY2HF[J]. Petroleum Drilling Techniques, 2014,42(2):85-90. [百度学术]
周德华,焦方正,贾长贵,等.JY1HF页岩气水平井大型分段压裂技术[J].石油钻探技术,2014,42(1):75-80. [百度学术]
ZHOU Dehua, JIAO Fangzheng, JIA Changgui, et al. Large‑scale multi-stage hydraulic fracturing technology for Shale Gas Horizontal Well JY1HF[J]. Petroleum Drilling Technology, 2014,42(1):75-80. [百度学术]
Xiong H. The effective cluster spacing plays the vital role in unconventional reservoir development: Permian Basin case studies[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition, the Woodlands, USA, 2020. [百度学术]
赵志恒,郑有成,范宇,等.页岩储集层水平井段内多簇压裂技术应用现状及认识[J].新疆石油地质,2020,41(4):499-504. [百度学术]
ZHAO Zhiheng, ZHENG Youcheng, FAN Yu, et al. Application and cognition of multi⁃cluster fracturing technology in horizontal wells in shale reservoirs[J]. Xinjiang Petroleum Geology, 2020,41(4):499-504. [百度学术]
Evans S, Halliburton F, Siddiqui S, et al. Impact of cluster spacing on infill completions in the Eagle Ford[C]. Proceedings of the Unconventional Resources Technology Conference, Houston, Texas, 2018. [百度学术]
张鑫,李军,张慧,等.威荣区块深层页岩气井套管变形失效分析[J].钻采工艺,2021,44(1):23-27. [百度学术]
ZHANG Xin, LI Jun, ZHANG Hui, et al. Analysis on casing deformation failure in deep shale gas wells in Weirong Shale Gas Play[J]. Drilling & Production Technology, 2021,44(1):23-27. [百度学术]
Jaripatke O A, Barman I, Ndungu J G, et al. Review of Permian completion designs and results[C]. Proceedings of the SPE Annual Technical Conference and Exhibition, 2018. [百度学术]
Barraza J, Capderou C, Jones M C, et al. Increased cluster efficiency and fracture network complexity using degradable diverter particulates to increase production, Permian Basin Wolfcamp shale case study[C]. Proceedings of the SPE Annual Technical Conference and Exhibition, 2017. [百度学术]
李龙,陈显举,彭安钰,等.贵州正安地区常压页岩气压裂关键技术[J].钻探工程,2022,49(5):189-193. [百度学术]
LI Long, CHEN Xianju, PENG Anyu, et al. Key technologies for hydraulic fracturing of normal pressure shale gas in the Zheng’an area of Guizhou[J]. Drilling Engineering, 2022,49(5):189-193. [百度学术]
Ling K, Wu X, Han G, et al. Optimising the multistage fracturing interval for horizontal wells in Bakken and Three Forks Formations[C]. Proceedings of the SPE Asia Pacific Hydraulic Fracturing Conference, Beijing, 2016. [百度学术]
Thomson J, Zaslavsky G, Leshchyshyn T. Completion design production case study in the Duvernay Shale Formation[C]. Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai,UAE, 2016. [百度学术]
赵志恒,郑有成,范宇,等.页岩储集层水平井段内多簇压裂技术应用现状及认识[J].新疆石油地质,2020,41(4):499-504. [百度学术]
ZHAO Zhiheng, ZHENG Youcheng, FAN Yu, et al. Application and cognition of multi⁃cluster fracturing technology in horizontal wells in shale reservoirs[J]. Xinjiang Petroleum Geology, 2020,41(4):499-504. [百度学术]
范宇,周小金,曾波,等.密切割分段压裂工艺在深层页岩气Zi2井的应用[J].新疆石油地质,2019,40(2):223-227. [百度学术]
FAN Yu, ZHOU Xiaojin, ZENG Bo, et al. Application of intensive staged fracturing technology in deep shale gas Well Zi-2[J]. Xinjiang Petroleum Geology, 2019,40(2):223-227. [百度学术]
周双君,朱立鑫,杨森,等.吉木萨尔页岩油区块防漏堵漏技术[J].石油钻探技术,2021,49(4):66-70. [百度学术]
ZHOU Shuangjun, ZHU Lixin, YANG Sen, et al. Technology for preventing and controlling circulation loss in the Jimusar Shale Oil Block[J]. Petroleum Drilling Techniques, 2021,49(4):66-70. [百度学术]
王磊,盛志民,赵忠祥,等.吉木萨尔页岩油水平井大段多簇压裂技术[J].石油钻探技术,2021,49(4):106-111. [百度学术]
WANG Lei, SHENG Zhimin, ZHAO Zhongxiang, et al. Large‑section and multi‑cluster fracturing technology for horizontal wells in the Jimsar shale oil reservoir[J]. Petroleum Drilling Techniques, 2021,49(4):106-111. [百度学术]
Mutalik P, Gibson R W. Case history of sequential and simultaneous fracturing of the Barnett shale in Parker County[C]. Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, USA, 2008. [百度学术]
申贝贝,何青,陈付虎,等.大牛地气田同步压裂工艺应用研究[J].重庆科技学院学报(自然科学版),2015,17(4):58-60. [百度学术]
SHEN Beibei, HE Qing, CHEN Fuhu, et al. The research of simultaneous fracturing technology in Daniudi Gas Field[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2015,17(4):58-60. [百度学术]
Waters G, Dean B, Downie R, et al. Simultaneous hydraulic fracturing of adjacent horizontal wells in the Woodford Shale[C]. Proceedings of the SPE Hydraulic Fracturing Technology Conference, the Woodlands, USA, 2009. [百度学术]
叶成林.苏53区块工厂化钻井完井关键技术[J].石油钻探技术,2015,43(5):129-134. [百度学术]
YE Chenglin. Key Technologies of factory drilling and completion in Su53 Block[J]. Petroleum Drilling Techniques, 2015,43(5):129-134. [百度学术]
钱斌,张俊成,朱炬辉,等.四川盆地长宁地区页岩气水平井组“拉链式”压裂实践[J].天然气工业,2015,35(1):81-84. [百度学术]
QIAN Bin, ZHANG Juncheng, ZHU Juhui, et al. Application of zipper fracturing of horizontal clusters wells in the Changning shale gas pilot zone, Sichuan Basin[J]. Natural Gas Industry, 2015,35(1):81-84. [百度学术]
Yu L, Wu X, Hassan N M S, et al. Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design[J]. Renewable Energy, 2020, 161:373-385. [百度学术]
Rafiee M, Soliman M Y, Pirayesh E. Hydraulic fracturing design and optimization: A modification to zipper frac[C]//SPE Annual Technical Conference and Exhibition, Texas, USA, 2012. [百度学术]
Algarhy A, Soliman M, Heinze L, et al. Design aspects of optimized zipper frac[C]//53rd US Rock Mechanics/Geomechanics Symposium, New York, USA, 2019. [百度学术]
Tian W, Li P, Dong Y, et al. Numerical simulation of sequential, alternate and modified zipper hydraulic fracturing in horizontal wells using XFEM[J]. Journal of Petroleum Science and Engineering, 2019,183:106251. [百度学术]
天工.中国石油首个页岩气工厂化压裂先导试验成功[J].天然气工业, 2014,34(1):85. [百度学术]
TIAN Gong. The successful pilot test for the first shale gas industrialized fracturing in PetroChina[J]. Natural Gas Industry, 2014,34(1):85. [百度学术]
Ming L. Continuous operation model in multi‑well pad W202H2: First shale gas factory in Block Weiyuan, SW China[C]. Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference, Singapore, 2016. [百度学术]
肖佳林,李奎东,高东伟,等.涪陵焦石坝区块水平井组拉链压裂实践与认识[J].中国石油勘探,2018,23(2):51-58. [百度学术]
XIAO Jialin, LI Kuidong, GAO Dongwei, et al. Practice and cognition on zipper fracturing of horizontal well group in Jiaoshiba block, Fuling[J]. China Petroleum Exploration, 2018,23(2):51-58. [百度学术]
Jacobs T. The shale evolution: Zipper fracture takes hold[J]. Journal of Petroleum Technology, 2014,66(10):60-67. [百度学术]
Murillo G G, León J M, Leem J, et al. Successful deployment of unconventional geomechanics to first zipper hydraulic fracturing in low‑permeability turbidite reservoir, Mexico[C]. Proceedings of the EUROPEC 2015, Madrid, Spain, 2015. [百度学术]
叶登胜,李建忠,朱炬辉,等.四川盆地页岩气水平井压裂实践与展望[J].钻采工艺,2014,37(3):42-44. [百度学术]
YE Dengsheng, LI Jianzhong, ZHU Juhui, et al. Practice and prospect of horizontal well fracturing technology in Sichuan shale gas reservior[J]. Drilling & Production Technology, 2014,37(3):42-44. [百度学术]
Patel H, Cadwallader S, Wampler J. Zipper fracturing: Taking theory to reality in the Eagle Ford Shale[C]. Proceedings of the Unconventional Resources Technology Conference, San Antonio, Texas, 2016. [百度学术]
Meng H, Wang X, Ge H, et al. Balanced stress fracturing theory and its application in platform well fracturing during unconventional oil and gas development[J]. Energy Reports, 2022, 8:10705-10727. [百度学术]
Pankaj P. Characterizing well spacing, well stacking, and well completion optimization in the Permian Basin: An improved and efficient workflow using cloud-based computing[C]. Proceedings of the Unconventional Resources Technology Conference, Houston, Texas, 2018. [百度学术]