摘要
深部钻探的复杂钻进条件对孕镶金刚石钻头的性能提出了更高的要求。为了提高电镀金刚石钻头的使用范围,研究了MnCl2和丁炔二醇乙氧基化合物(BEO)对镍基镀层表面形貌、显微硬度和热稳定性的影响,对比研究了300 ℃退火1 h后纯Ni金刚石钻头、Ni-Mn金刚石钻头和添加BEO的Ni-Mn金刚石钻头的钻进性能。结果表明,300 ℃退火1 h后的纯Ni镀层显微硬度下降到300 HV。以此镀层为胎体的金刚石钻头由于胎体耐磨性过低,导致金刚石过早脱落,钻头寿命只有2.94 m。Ni-Mn镀层和添加BEO的Ni-Mn镀层都具有良好的热稳定性,300 ℃退火1 h后硬度分别提高到640 HV和693 HV。Ni-Mn胎体电镀金刚石钻头在退火后兼有合适的钻进寿命和钻进效率,钻头寿命可以达到4.67 m。而添加BEO的Ni-Mn胎体金刚石钻头在本文试验中由于胎体硬度过高,导致金刚石无法正常出刃而失效。
随着经济的快速发展,我国对能源资源的需求急剧增长,而深部钻探是解决能源资源问题的必要手
对于孕镶金刚石钻头来说,金刚石钻头胎体磨损的快慢对金刚石钻头的钻进效率和使用寿命有很大影
在镍合金的研究中,人们发现锰的引入对于提高镍镀层的机械性能与热稳定性有着重要的作
针对深部钻探对金刚石钻头优良寿命的需要,本文在镀液中引入了锰离子和丁炔二醇乙氧基化合物(BEO),研究了它们对镀层表面形貌、显微硬度和耐热性的影响;对比研究了分别以纯Ni和Ni-Mn合金为胎体材料的金刚石钻头的钻进性能,并分析了钻头的磨损形貌,以期扩大电镀孕镶金刚石钻头的使用场合。
本文所用的镀液配方如
成分 | 浓度/(g· | 各组分作用 | ||
---|---|---|---|---|
Ni | Ni-Mn | 添加BEO的Ni-Mn | ||
NiSO4 | 200 | 200 | 200 |
主盐,提供N |
H3BO3 | 35 | 35 | 35 | pH值缓冲剂 |
NaCl | 9.3 | 0 | 0 |
作为对比,提供相同摩尔质量的C |
MnCl2 | 0 | 10 | 10 |
主盐,提供M |
糖精 | 2 | 2 | 2 | 细化晶粒,减小应力 |
十二烷基硫酸钠 | 0.075 | 0.075 | 0.075 | 润湿剂 |
BEO | 0 | 0 | 0.15 | 调整镀层性能 |
选用经过0.05 μm刚玉粉抛光的铜锌片(尺寸为20 mm×20 mm×0.2 mm)作为镀层的基体,除中心部分直径为10 mm的圆形区域外,基体的其余部分均用聚氯乙烯掩模覆盖。电镀时,镀液温度保持在35 ℃,pH值为3.8,电流密度为1.6 A/d
镀层的表面形貌采用Tescan Lyra3型扫描电子显微镜观察。镀层的显微硬度采用HVS-1000A型显微硬度计测试。测试时,使用1 N的加载载荷,停留时间为10 s。在每个试样表面选取随机的5个点进行测量,取平均值作为镀层的显微硬度。
本文所用的钻头钢体如

图1 钻头钢体及实物
Fig.1 Diamond bit body and electroplated diamond bit
采用自制微钻实验台进行室内钻进试验。岩样采用坚硬致密、中等研磨性的黄锈石花岗岩,尺寸为140 mm×140 mm×180 mm。所有钻头的微钻实验采用统一的钻进规程参数:钻压9 MPa,钻头转速710 r/min,冲洗液为清水,回次进尺14~15 cm。钻进试验后,采用KEYENCE VK-X100K型激光共聚焦显微镜拍摄钻头唇面的磨损形貌。
三种镀层的表面形貌如

图2 三种镀层的扫描电镜照片
Fig.2 Scanning electron microscopy images of three electrodeposited coatings
对3种镀层退火前后的显微硬度进行了测试,结果如

图3 三种镀层退火前后的显微硬度变化
Fig.3 Microhardness changes of three deposited coatings before and after annealing
退火处理后,纯Ni镀层和两种Ni-Mn镀层的硬度变化趋势相反。纯Ni镀层的显微硬度显著下降,在300 ℃退火1 h后下降到300 HV,约为退火前的60%。而两种Ni-Mn镀层则发生了退火硬化现象,可以明显观察到显微硬度的增长。经过300 ℃退火后,Ni-Mn镀层显微硬度增长到了640 HV,较未退火时提高了约15%;添加BEO的Ni-Mn镀层的硬度受退火处理的影响更大,硬度增加了近17%。说明锰和BEO的加入不仅有利于其抵抗退火软化现象,还能进一步增加显微硬度。根据文献,Ni-Mn镀层退火硬化现象可以归因于退火导致晶粒内部位错密度降低或孪晶强化作
对3种钻头的钻进时间和对应进尺绘制的钻进时效曲线如

图4 钻进时效曲线
Fig.4 Drilling efficiency
在电镀金刚石钻头的钻进过程中,金刚石的破碎掉落和出刃是一个连续的过程,并不会出现一层金刚石完全脱落后,下一层金刚石才出刃的情况。因此,当唇面出现较多的脱落坑同时下层金刚石开始出刃时,钻头的累计进尺可以看作是这一层金刚石的寿命。本文3种钻头的单层金刚石的使用寿命如
钻头类别 | 单层金刚石使用寿命/m |
---|---|
纯Ni钻头 | 2.94 |
Ni-Mn钻头 | 4.67 |
添加BEO的Ni-Mn钻头 | 4.20 |
为了了解3种电镀金刚石钻头性能差异的原因,采用激光共聚焦显微镜观察了钻进后3种钻头唇面的磨损形貌(激光图像和高度图像),如

图5 三种电镀金刚石钻头的唇面磨损形貌
Fig.5 Wear patterns of the three electroplated diamond bits
金刚石出刃/μm | 纯Ni钻头 | Ni-Mn钻头 | 添加BEO的Ni-Mn钻头 |
---|---|---|---|
底唇面1 | 224.20 | 150.41 | 92.31 |
215.02 | 139.53 | 89.83 | |
180.30 | 150.03 | 85.70 | |
210.02 | 153.12 | 104.05 | |
底唇面2 | 202.23 | 146.13 | 87.93 |
220.12 | 145.20 | 87.45 | |
216.30 | 128.56 | 107.86 | |
179.70 | 120.37 | 101.72 | |
底唇面3 | 235.37 | 141.13 | 98.51 |
225.20 | 110.14 | 107.51 | |
203.36 | 127.57 | 97.02 | |
236.50 | 121.36 | 98.42 | |
底唇面4 | 203.24 | 139.53 | 98.23 |
183.02 | 135.10 | 79.13 | |
209.03 | 117.05 | 94.24 | |
214.30 | 124.20 | 106.27 | |
平均出刃 | 209.87 | 134.34 | 96.01 |
3种钻头中,纯Ni钻头的钻进时效虽然最快,但寿命最短。通过高度图像发现,纯Ni钻头的内外保径磨损严重,唇面已经接近弧面,唇面内外侧的金刚石也有很多脱落。从金刚石出刃高度也可以看出,纯Ni钻头的金刚石出露最多,说明纯Ni钻头的胎体磨损最快,已经处于非正常磨损状态。这会导致钻头内外保径的丧失,使得钻头提前失效。普通的纯Ni胎体的电镀金刚石钻头由于塑性好且硬度低,钻进类似花岗岩时钻头唇面会出现拉槽现
Ni-Mn钻头的使用寿命最高,虽然在钻进过程中钻进时效下降到1.4 m/h,但仍处于正常钻进时效范围,说明Ni-Mn钻头能够在正常钻进时效下实现金刚石的换层,钻头胎体耐磨性与岩石研磨性匹配良好。观察图5(b)Ni-Mn合金钻头的高度图像发现,Ni-Mn合金钻头表面出现了类似蝌蚪状的尾状支撑,金刚石的出露面积也较为正常。Ni-Mn胎体电镀金刚石钻头的金刚石失效形式主要是微观破碎(

图6 Ni-Mn钻头金刚石微破碎
Fig.6 Micro‑fractured diamond grains in Ni-Mn matrix diamond bit
添加BEO的Ni-Mn钻头前期虽然有较高的钻进时效,但后期钻进时效下降到0.64 m/h。从

图7 添加BEO的Ni-Mn钻头中被磨钝的金刚石
Fig.7 Wear flat diamond grains in diamond bit of Ni-Mn matrix bit with BEO as additive
总体而言,经过退火处理后,纯Ni胎体的金刚石钻头由于胎体较软,内外保径被严重磨损,这不仅导致了本层金刚石工作寿命下降,还会严重影响后续金刚石层的使用。添加BEO的Ni-Mn钻头则由胎体硬度过高,导致胎体磨损较慢,金刚石被磨钝,下层金刚石无法正常出刃。Ni-Mn钻头在退火后,仍然保持较长的钻进寿命,胎体磨损速度与金刚石的磨损相适应,能保持钻头的自锐性。
本文主要比较了3种胎体镀层的表面形貌和显微硬度,并对3种钻头的钻进性能进行了比较与分析,得到以下结论:
(1)纯Ni镀层退火后会产生退火软化现象,硬度下降到300 HV;而MnCl2和BEO的加入则使镀层具有退火硬化性能,经300 ℃退火1 h后硬度分别提高到640 HV和693 HV。
(2)300 ℃退火1 h后的纯Ni胎体电镀金刚石钻头产生了钻进性能劣化的问题,金刚石过快脱落,钻头寿命只有2.94 m;镀液中添加BEO得到的Ni-Mn胎体电镀金刚石钻头经300 ℃退火1 h后,由于胎体耐磨性过高,金刚石出刃困难而出现金刚石磨钝问题;Ni-Mn胎体电镀金刚石钻头在300 ℃退火1 h后,兼有合适的钻进寿命和钻进效率,钻头寿命可以达到4.67 m。
(3)随着热稳定性问题的解决,电镀金刚石钻头在深孔钻进中有望发挥重要作用。
参考文献(References)
王安建,高芯蕊.中国能源与重要矿产资源需求展望[J].中国科学院院刊, 2020,35(3):338-344. [百度学术]
WANG Anjian, GAO Xinrui. China’s energy and important mineral resources demand perspective[J]. Bulletin of the Chinese Academy of Sciences, 2020,35(3):338-344. [百度学术]
文博杰,陈毓川,王高尚,等.2035年中国能源与矿产资源需求展望[J].中国工程科学,2019,21(1):68-73. [百度学术]
WEN Bojie, CHEN Yuchuan, WANG Gaoshang, et al. China’s demand for energy and mineral resources by 2035[J]. Strategic Study of CAE, 2019,21(1):68-73. [百度学术]
薛倩冰,梁楠,韩丽丽,等.大陆科学钻探工程技术发展动态及趋势分析[J].钻探工程,2021,48(12):1-6. [百度学术]
XUE Qianbing, LIANG Nan, HAN Lili, et al. Development trend of continental scientific drilling technology[J]. Drilling Engineering, 2021,48(12):1-6. [百度学术]
吴海霞,蔡家品,沈立娜,等.钻井利器的故事之“金刚石钻头”[J].钻探工程,2023,50(2):155-158. [百度学术]
WU Haixia, CAI Jiapin, SHEN Lina, et al. The story of a drilling weapon—Diamond bit[J]. Drilling Engineering, 2023,50(2):155-158. [百度学术]
张金昌,刘秀美.13000 m科学超深井钻探技术[J].探矿工程(岩土钻掘工程),2014,41(9):1-6. [百度学术]
ZHANG Jinchang, LIU Xiumei. 13000m Drilling Technology of Super depth Scientific Drilling well[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2014,41(9):1-6. [百度学术]
王悦,张凯,李其州,等.超高速下单粒金刚石与岩石相互作用响应的研究[J].钻探工程,2023,50(3):21-29. [百度学术]
WANG Yue, ZHANG Kai, LI Qizhou, et al. Research on the response of single diamond particles and rock interaction at ultra-high speed[J]. Drilling Engineering, 2023,50(3):21-29. [百度学术]
段隆臣,孙武成,王志明,等.孕镶金刚石钻头磨损研究现状与发展趋势[J].地质科技通报,2024,43(3):200-217. [百度学术]
DUAN Longchen, SUN Wucheng, WANG Zhiming, et al. Research status and development trend on wear of impregnated diamond bits[J]. Bulletin of Geological Science and Technology, 2024,43(3):200-217. [百度学术]
王稳石,隆东,闫家,等.松科2井二开大口径同径取心钻进技术[C]//中国地质学会探矿工程专业委员会.第十八届全国探矿工程(岩土钻掘工程)学术交流年会论文集.北京:地质出版社,2015:749-754. [百度学术]
WANG Wenshi, LONG Dong, YAN Jia, et al. Technology of large diameter core‑drilling in Songke 2 well[C]//Mineral Engineering Committee, Geological Society of China. Special for the Eighteenth National Exploration Engineering (Rock & Soil Drilling and Tunneling) Academic Conference. Beijing: Geological Publishing House, 2015:749-754. [百度学术]
朱永宜,王稳石.松科一井(主井)取心钻进工艺[J].探矿工程(岩土钻掘工程),2008,35(9):1-5. [百度学术]
ZHU Yongyi, WANG Wenshi. Coring drilling technology in Well-1(main shaft)of Songliao Scientific Drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2008,35(9):1-5. [百度学术]
王星星,李帅,龙伟民,等.电化学方法制备金刚石工具的胎体材料性能研究[J].金刚石与磨料磨具工程,2019,39(4):14-21. [百度学术]
WANG Xingxing, LI Shuai, LONG Weimin, et al. Research on matrix material property of diamond tool with electrochemical preparation method[J]. Diamond & Abrasives Engineering, 2019,39(4):14-21. [百度学术]
吴颖.电镀金刚石工具的应用现状及改进研究[J].热加工工艺,2015,44(18):18-21. [百度学术]
WU Ying. Application status and improved research of electroplated diamond tools[J]. Materials Science and Engineering: A, 2015,44(18):18-21. [百度学术]
Klement U, Erb U, El-Sherik A M, et al. Thermal stability of nanocrystalline Ni[J]. Materials Science and Engineering: A, 1995,203(1-2):177-186. [百度学术]
Srivastava M, Grips V W, Rajam K S. Electrodeposition of Ni-Co composites containing nano‑CeO2 and their structure, properties[J]. Applied Surface Science, 2010,257(3):717-722. [百度学术]
Thuvander M, Abraham M, Cerezo A, et al. Thermal stability of electrodeposited nanocrystalline nickel and iron-nickel alloys[J]. Materials science and technology, 2001,17(8):961-970. [百度学术]
邹长春,王成善,彭诚,等.中国大陆科学深钻发展的若干思考与建议[J].现代地质,2023,37(1):1-14. [百度学术]
ZOU Changchun, WANG Chengshan, PENG Cheng, et al. Development of the Chinese continental scientific deep drilling: Perspectives and suggestions[J]. Geoscience, 2023,37(1):1-14. [百度学术]
刘晓阳,李博.地浸砂岩型铀矿钻探现状及提高钻探效率的技术措施[J].钻探工程,2021,48(1):35-41. [百度学术]
LIU Xiaoyang, LI Bo. Current status of in‑situ leachable sandstone‑type uranium drilling and technical measures of improving drilling efficiency[J]. Drilling Engineering, 2021,48(1):35-41. [百度学术]
杨展,谭松成,方小红,等.提高烧结压力对孕镶金刚石钻头性能的影响研究[J].煤田地质与勘探,2023,51(6):194-199. [百度学术]
YANG Zhan, TAN Songcheng, FANG Xiaohong, et al. Effects of increasing sintering pressure on the performance of impregnated diamond bit[J]. Coal Geology & Exploration, 2023,51(6):194-199. [百度学术]
李芃.硬岩钻进用预合金粉末金刚石钻头胎体性能的研究[D].长春:吉林大学,2019. [百度学术]
LI Peng. study on properties of prealloyed diamond bit matrix for hard rock drilling[D]. Changchun: Jinlin University, 2019. [百度学术]
Zhu Z, Li X, Zhu D. Mechanical electrodeposition of Ni-Mn alloy[J]. Materials and manufacturing processes, 2013,28(12):1301-1304. [百度学术]
Talin A A, Marquis E A, Goods S H, et al. Thermal stability of Ni-Mn electrodeposits[J]. Acta materialia, 2006,54(7):1935-1947. [百度学术]
Goods S H, Kelly J J, Yang N. Electrodeposited nickel-manganese: An alloy for microsystem applications[J]. Microsystem Technologies, 2004,10:498-505. [百度学术]
McCormack A G, Pomeroy M J, Cunnane V J. Microstructural development and surface characterization of electrodeposited nickel/yttria composite coatings[J]. Journal of The Electrochemical Society, 2003,150(5):C356. [百度学术]
Meng G, Li Y, Shao Y, et al. Effect of microstructures on corrosion behavior of nickel coatings:(I) Abnormal grain size effect on corrosion behavior[J]. Journal of Materials Science \& Technology, 2015,31(12):1186-1192. [百度学术]
李彭瑞,任春江,章军云,等.电镀参数对电镀镍层性能的影响[J].电镀与精饰,2022,44(2):26-29. [百度学术]
LI Pengrui, REN Chunjiang, ZHANG Junyun, et al. Effect of electroplating parameters on the performance of electroplating nickel layer[J]. Plating & Finishing, 2022,44(2):26-29. [百度学术]
Li T, Wei X, Chen Y, et al. Electrodeposition of nanocrystalline cobalt from sulfate baths containing butynediol ethoxylate[J]. Materials Chemistry and Physics, 2024,314:128927. [百度学术]
Yang X, Liu S, Wei X, et al. Effects of annealing on the structure and microhardness of nanocrystalline Ni-Mn electrodeposits[J]. Journal of Alloys and Compounds, 2023,960:170732. [百度学术]
卢柯,刘学东,胡壮麒.纳米晶体材料的Hall-Petch关系[J].材料研究学报,1994,8(5):385-391. [百度学术]
LU Ke, LIU Xuedong, HU Zhuangqi. The Hall-Petch relation in nanocrystalline materials[J]. Chinese Journal of Materials Research, 1994,8(5):385-391. [百度学术]
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009,324(5925):349-352. [百度学术]
Rohatgi A, Vecchio K S, Gray G T. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery[J]. Metallurgical and Materials Transactions A, 2001,32:135-145. [百度学术]
Lehockey E M, Palumbo G, Lin P. Improving the weldability and service performance of nickel-and iron‑based superalloys by grain boundary engineering[J]. Metallurgical and materials transactions a, 1998,29:3069-3079. [百度学术]
韦秀洁,陈宇湘,杨雪嘉,等.丁炔二醇乙氧基化合物对镍锰镀层的影响[J].电镀与精饰,2024,46(6):42-47. [百度学术]
WEI Xiujie, CHEN Yuxiang, YANG Xuejia, et al. Effect of butynediol ethoxylate on Ni-Mn coating[J]. Plating and Finishing,2024,46(6):42-47. [百度学术]
Alimadadi H, Fanta A B, Somers M A, et al. Crystallographic orientations and twinning of electrodeposited nickel—A study with complementary characterization methods[J]. Surface and Coatings Technology, 2014,254:207-216. [百度学术]