摘要
大洋科学钻探是一项对海洋底部进行科学探测和研究的重要手段,在地球科学、生命科学、资源勘探等诸多领域具有极其重要的意义。井下长期观测装置(CORK)是大洋科学钻探的重要补充,实现对海底环境从短期取样到长期动态观测的转变。过去几十年间,海底观测设备的技术手段不断提升,在初始CORK研发的基础上衍生出了另外4个新的版本,从最初的单一地层取样,发展到多地层取样,同时还可以进行原位测试。由我国主导的新一轮大洋钻探计划将要开始实施,亟需加大CORK技术的攻关力度,利用我国自己的资源和人才构建海底CORK观测系统,为尽快跻身世界海洋强国行列奠定坚实基础。
大洋科学钻探计划实施50余年来,获得了大量岩心和海量观测数据,在固体地球和地球动力学、气候和环境演化、深部生物圈等领域取得了一系列重要认识和成果,提高了对地球和生命科学的认知,成为促进海洋科学发展的重要动
海底地下流体的活动及其与岩石或沉积物的相互作用,对海洋热通量变化、海底成矿作用、地球环境演化过程、地壳岩石物理特性等有重要的影
为了更好地对海底地下流体进行监测,充分发挥已有钻孔的科学研究价值,科学家们研发了一套井下长期观测装置(Circulation Obviation Retrofit Kit,简称CORK),并且在1991年ODP 139航次成功完成首次布

图1 IODP布放CORK装置钻孔分布
Fig.1 Distribution of drilling holes for IODP deployment of CORK device
本文首先对CORK的发展历程做简要回顾,重点介绍几种不同类型的CORK的设计特点,并对CORK在大洋科学钻探中的几种典型应用进行举例说明,最后对CORK未来的发展方向和我国在这方面的研究进行展望。
CORK的概念最早由Carson等人于1989年提

图2 CORK基本结构(据文献[
Fig.2 CORK basic structure
目前,CORK已被用于对密封钻孔及对钻孔内流体、微生物进行长期观测的科学装置的统称,随着CORK技术发展,已经在初版CORK的基础上发展衍生出诸如ACORK、CORKⅡ、有缆CORK以及L-CORK等不同类型的COR
初版CORK(

图3 初版CORK(据文献[
Fig.3 Initial CORK
初版CORK装置实现了对钻孔的密封,阻止了钻孔内外流体的交换,并对钻孔内流体进行长期监测,是大洋科学钻探一项重要的技术革新。然而初版CORK也存在明显不足:(1)只能在孔口处进行密封,不能在同一钻孔中进行不同层位的监测;(2)设备布放和数据回收等主要工作需要钻探船来完成;(3)传感器外径受到限制,制约了传感器的选用。
为了解决初版CORK存在的问题和不足,引入封隔器技术对钻孔内流体进行分层监测,形成高级CORK(ACORK)(

图4 ACORK(据文献[
Fig.4 ACORK
相较于初版CORK,ACORK最大的改进是在目标地层的套管处安装地层封隔器。ACORK布放方式和初版CORK也不同,在完成重入系统及20 in套管布放后通过随钻测井获取地层资料,确定需要长期观测的地层深度。ACORK在钻台下方进行组装,封隔器、筛管和传感器等通过管线连接至井口处的取样端口和数据记录仪。ACORK通过由泥浆马达驱动的扩孔器在不旋转的情况下进入钻孔,在到达指定观测深度后,对封隔器打压,使其膨胀填充井眼环空,实现不同观测层位的密封,套管底部则用桥塞进行密封。
不同观测层位布设有不同的筛管和传感器,并将数据通过套管外部的管线上传到CORK顶部。此外,套管中还可以布设1套观测系统。由于ACORK系统在安装上存在一定的技术难度,没有大规模布放,只在ODP 196航次布放了2
在ACORK的基础上进一步改造和扩展,科学家们提出了CORK II(

图5 CORK II(据文献[
Fig.5 CORK II
CORK II的布放方式和之前的CORK系统有所不同。在完成钻探取心任务后,下16 in套管建立钻孔重返系统,之后下103/4 in套管,在底部用固井水泥进行密封。将带有封隔器和筛管的41/2 in套管进行组装,封隔器和筛管的位置根据需要观测和取样的地层位置来确定。最后将CORK主体部分与套管进行连接,并安放入钻孔中。在将CORK主体悬挂在重入系统之前,首先安装并锁定流体取样器匝锁,然后通过CORK上部的仪器重入系统将取样器缓慢降入取样器匝锁上,以此保持取样器与周围环境温度和压力的平
取样器布放到位以后,将CORK仪器主体部分固定到重入系统上,给封隔器打压开始进行压力监测和流体取
有缆型CORK是一种不依赖于钻探船,通过脐带缆连接至船上的海底观测装

图6 有缆型CORK(据文献[
Fig.6 Wireline CORK
有缆型CORK布放不依赖于钻探船,因此实施灵活、经济。不过,受到脐带缆可用载荷的限制,通常最多只能封隔3个层
L-CORK是在CORK II的基础上发展而来的。L-CORK在观测舱下方设置一根连通钻孔内部的横向取样管(

图7 L-CORK(据文献[
Fig.7 L-CORK
CORK系统自20世纪90年代初问世以来,已发展迭代30余年,成功应用到洋壳水文地质学、固体地球物理、流体地球化学、深部生物圈微生物学和生物地球化学、海底地质灾害监测等方面。
洋壳水文地质是井下长期观测系统最重要的应用领域之
注入速度/ (L· | 导水性(T)/ (1 | 渗透率(Kh)/ (1 |
---|---|---|
9.2 | 1.40 | 1.05 |
0 | 1.91 | 1.44 |
5.6 | 1.42 | 1.07 |
0 | 2.17 | 1.63 |

图8 通过在857D孔中布放的CORK进行地层渗透率计算(据文献[
Fig.8 Calculation of formation permeability by deploying CORK in Hole 857D
此外,还通过开展示踪实验研究流体运移方向和流动速

图9 IODP 1301A孔中CORK系统得到的不同离子浓度、每周平均温度与时间的关系(据文献[
Fig.9 Relationship between different ion concentrations obtained by CORK system in IODP 1301A hole and average weekly temperature and time
紫色线表示周平均温度,黑色实线表示海底海水浓度,绿色虚线表示ODP 1026B孔中流体浓度,蓝色符号来自示踪剂连续取样系统,红色符号来自酸加成连续取样系统,垂直的黄线标志着2007年9月产生的流向逆转
天然气水合物是一种清洁能源,但它的分解和释放不仅可能诱发全球气候变暖,还可能导致大规模海底滑

图10 IODP U1364A钻孔中CORK得到的温度与热阻抗的关系(据文献[
Fig.10 Relationship between temperature and thermal impedance by the CORK in IODP Hole U1364
CORK在地震监测上发挥着重要作用,部署在马里亚纳、哥斯达黎加俯冲带、日本南海海槽、日本海沟等俯冲带区域的CORK成功观测到地震震前、震中和震后造成的地层压力变化,对地震等自然灾害的评估具有重要意义。ODP168/IODP301航次在胡安·德·富卡洋中脊1027C孔安装的CORK系统,观测到了1996年和1999年地震产生的地层压力对区域应变的响应,压力瞬时升高了约0.2kPa,瞬时压力变化指数与根据断裂滑移预测的应变一

图11 CORK系统观测到的海底扩张和地震产生的地层压力变化(据文献[
Fig.11 Formation pressure changes caused by seafloor expansion and earthquakes observed by the CORK system
深部生物圈的发现,是大洋钻探的一项重大成果。目前海洋和深部生物圈的认识大多来自海洋科考和深海钻探,但是随着研究程度的不断深入,科研学者越来越清晰地认识到,研究这些生物需要长期的、不同时间和空间尺度上取得的观测数据,具有进行原位实验和实时数据采集的能力也至关重要。
CORK提供了一个新的监测短周期变化的途径。ODP 186航次利用CORK中的长期渗透取样器,记录了连续5天的Cl、Mn和Fe等元素以及对应的潮汐高度和温度数据,如

图12 通过CORK获取的Cl、Mn、Fe、潮汐高度和温度数据(据文献[
Fig.12 Cl, Mn, Fe and corresponding tidal height and temperature data obtained by the CORK
随着技术的发展,CORK经历了多次变革和改进,出现了不同型号的CORK,如初版CORK、ACORK、CORK II和L-CORK等。这些不同类型的CORK针对不同的科学需求和应用环境进行了优化和改进,是大洋岩石圈地壳的温压计,是监测深海海底生物活动性、海洋水文地质变化、洋壳物性变化、地震海啸等地质灾害的利器,也是实现透明海洋、建立四维地球动力学模式的重要手段,对海洋地质学乃至地球系统科学的发展都非常重要。
(1)大洋钻探面临的特殊应用环境,如高温、高压等,对井下观测仪器和取样装置的性能指标和可靠性要求较高,据了解,目前CORK成功率不足30%,主要由仪器失效导致;
(2)不同的观测单元具有不同的井下安装要求,以及各自不同的安装工艺,如地震计、应力应变仪等,如何协调各观测单元在井下的整体安装,是保证综合观测系统成功运行的前提;
(3)采样装置的材料对化学和微生物采样有一定的污染,目前尚无法满足保压、保光、保量、保温、保湿、保活性回收要求;
(4)关于流体化学元素测定,目前依赖于原位采样地面测试,还不能达到原位识别判定;
(5)数据采集技术目前仍然需要通过ROV,采用高压水密件实现,成本非常高昂。
目前我国大洋钻探还处于起步阶段,相关的研究也都集中在钻探取样技术
(1)流体取样技术:井口密封、井下分层封隔器、井下流体长期观测传感器链等关键技术。
(2)井口装置技术:长期原位观测面临的水下供能、实时通讯、数据传输、运维保障等技术。
(3)井中长期监测技术:井中地球物理、地球化学观测与原位流体及微生物取样技术。
(4)协同作业技术:深钻、深潜与深网协同作业关键技术。
CORK系统在我国具有广阔的发展前景,将为我国的科学研究、资源勘探、海洋工程和灾害预警等领域提供重要的技术支持。支撑构建我国“深钻+深潜+深网”三深技术体系,促进我国深海科技自立自强,进一步提高我国深海深地战略科技力量。
参考文献(References)
汪品先.大洋钻探五十年:回顾与前瞻[J].科学通报,2018,63(36):3866-3876. [百度学术]
WANG Pinxian. Fifty years of scientific ocean drilling: Review and prospect[J]. Chinese Science Bulletin, 2018,63(36):3866-3876. [百度学术]
冉皞,张涛.近十年大洋科学钻探进展与未来重点发展方向[J].中国地质,2024,51(3):1091-1094. [百度学术]
RAN Hao, ZHANG Tao. Progress of scientific ocean drilling over last decade and future priories[J]. Geology in China, 2024,51(3):1091-1094. [百度学术]
Hofmeister A M, Criss R E. Earth's heat flux revised and linked to chemistry[J]. Tectonophysics, 2005,395(3/4):159-177. [百度学术]
Fisher A T, Urabe T, Klaus A. The hydrogeologic architecture of basaltic oceanic crust: compartmentalization, anisotropy, microbiology, and crustal‑scale properties on the eastern flank of Juan de Fuca Ridge, eastern Pacific Ocean[Z]. Integrated Ocean Drilling Program Expedition 301 Scientific Prospectus, 2004. [百度学术]
Fisher A T, Wheat C G, Becker K, et al. Scientific and technical design and deployment of long‑term subseafloor observatories for hydrogeologic and related experiments, IODP Expedition 301, eastern flank of Juan de Fuca Ridge[C]//Proc. IODP, 301, College Station TX, 2005. [百度学术]
Davis E E, Becker K, Pettigrew T, et al. Cork: a hydrologic seal and downhole observatory for deep‑ocean boreholes[J]. Proceedings of the Ocean Drilling Program: Initial reportPart, 1992,139:43-53. [百度学术]
Becker K, Davis E, Design I C. Advanced CORKs for the 21st century[C]//Scripps Institution of Oceanography Engineering Meeting. Texas A&M University,1998. [百度学术]
Becker K, Davis E E. A review of Cork designs and operations during the Ocean Drilling Program[C]//Proc. IODP, 301, College Station TX, 2005. [百度学术]
prepared by the Ocean Drilling Program, Texas A & M University, in cooperation with the National Science Foundation and Joint Oceanographic Institutions, Inc.. Proceedings of the Ocean Drilling Program. Initial reports[R]. College Station, Tex.: Ocean Drilling Program,2002. [百度学术]
Jannasch H W, Davis E E, Kastner M, et al. CORK‑II: long‑term monitoring of fluid chemistry, fluxes, and hydrology in instrumented boreholes at the Costa Rica subduction zon
Becker K, Davis E E. Plugging the seafloor with CORKs[J]. Oceanus, 2000,42(1):14-16. [百度学术]
Spiess F N, Boegeman D E, Lowenstein C D. First ocean‑research‑ship‑supported fly‑in re‑entry to a deep ocean drill hole[J]. Marine Technology Society Journal, 1992,26(3):3-10. [百度学术]
Foucher J P, Henry P, Harmegnies F. Long‑term observations of pressure and temperature in hole 948D, barbados accretionary prism[J]. Proceedings of the Ocean Drilling Program. Scientific results, 1997,156:239-245. [百度学术]
Alt J C. Hydrothermal fluxes at mid‑ocean ridges and on ridge flanks[J]. Comptes Rendus Geoscience, 2003,335(10/11):853-864. [百度学术]
Mikada H. Proceedings of the Ocean Drilling Program, 196 Initial Reports[C]//Proceedings of the ocean drilling program,Ocean Drilling Program. 2002. [百度学术]
Fisher A T, Urabe T, Klaus A. IODP expedition 301 installs three borehole crustal observatories, prepares for three‑dimensional, cross‑hole experiments in the Northeastern Pacific Ocean[J]. Scientific Drilling, 2005,1:6-11. [百度学术]
Nakagawa S, Inagaki F, Suzuki Y, et al. Microbial community in black rust exposed to hot ridge flank crustal fluids[J]. Applied and Environmental Microbiology, 2006,72(10):6789-6799. [百度学术]
Steinsbu B O, Thorseth I H, Nakagawa S, et al. Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate‑reducer isolated from black rust exposed to hot ridge flank crustal fluids[J]. International Journal of Systematic and Evolutionary Microbiology, 2010,60(Pt 12):2745-2752. [百度学术]
Orcutt B N, Bach W, Becker K, et al. Colonization of subsurface microbial observatories deployed in young ocean crust[J]. The ISME Journal, 2011,5(4):692-703. [百度学术]
Becker K, Davis E E, Spiess F N, et al. Temperature and video logs from the upper oceanic crust, Holes 504B and 896A, Costa Rica Rift flank: implications for the permeability of upper oceanic crust[J]. Earth and Planetary Science Letters, 2004,222(3/4):881-896. [百度学术]
Davis E E, Becker K, Wang K, et al. A discrete episode of seismic and aseismic deformation of the Nankai trough subduction zone accretionary prism and incoming Philippine Sea plate[J]. Earth and Planetary Science Letters, 2006,242(1/2):73-84. [百度学术]
Davis E E, Villinger H W. Transient formation fluid pressures and temperatures in the Costa Rica forearc prism and subducting oceanic basement: cork monitoring at ODP Sites 1253 and 1255[J]. Earth and Planetary Science Letters, 2006,245(1/2):232-244. [百度学术]
Wheat C G, Jannasch H W, Kastner M, et al. Fluid sampling from oceanic borehole observatories: design and methods for Cork activities (1990-2010)[C]//Proc. IODP, 327. 2011. [百度学术]
Fisher A T, Wheat C G, Becker K, et al. Design,deployment,and status of borehole observatory systems used for single‑hole and cross‑hole experiments, IODP Expedition 327, eastern flank of Juan de Fuca Ridge1[C]//Proc. IODP, 327. 2011. [百度学术]
Davis E E, Horel G C, Macdonald R D, et al. Pore pressures and permeabilities measured in marine sediments with a tethered probe[J]. Journal of Geophysical Research Atmospheres, 1991,96(B4):5975-5984. [百度学术]
Becker K, Morin R H, Davis E E. Permeabilities in the middle valley hydrothermal system measured with packer and flowmeter experiments[J]Proceedings of the Ocean Drilling Program, 1994,139:613-626. [百度学术]
Elderfield H, Wheat C G, Mottl M J, et al. Fluid and geochemical transport through oceanic crust: a transect across the eastern flank of the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 1999,172(1/2):151-165. [百度学术]
Wheat C G, McDuff R E. Mapping the fluid flow of the Mariana Mounds ridge flank hydrothermal system: Pore water chemical tracers[J]. Journal of Geophysical Research, 1995,100(B5):8115-8131. [百度学术]
Fisher A T, Davis E E, Hutnak M, et al. Hydrothermal recharge and discharge across 50 km guided by seamounts on a young ridge flank[J]. Nature, 2003,421(6923):618-621. [百度学术]
Wheat C G, Jannasch H W, Fisher A T, et al. Subseafloor seawater‑basalt‑microbe reactions: Continuous sampling of borehole fluids in a ridge flank environment[J]. Geochemistry Geophysics Geosystems, 2010,11(7).DOI:10.1029/2010GC003057. [百度学术]
吴能友,陈弘,蔡秋蓉,等.科学大洋钻探与天然气水合物[J].地球科学进展,2003,18(5):753-758. [百度学术]
WU Nengyou, CHEN Hong, CAI Qiurong, et al. Scientific ocean drilling and gas‑hydrates[J]. Advance in Earth Sciences, 2003,18(5):753-758. [百度学术]
Becker K, Davis E E, Heesemann M, et al. A long‑term geothermal observatory across subseafloor gas hydrates, IODP hole U1364A, cascadia accretionary prism[J]. Frontiers in Earth Science, 2020,8:568566. [百度学术]
Kastner M, Becker K, DAVIS E E, et al. New insights into the hydrogeology of the oceanic crust through long‑term monitoring[J]. Oceanography, 2006,19(4):46. [百度学术]
Jannasch H W, Wheat C G, Plant J N, et al. Continuous chemical monitoring with osmotically pumped water samplers: OsmoSampler design and applications[J]. Limnology and Oceanography‑Methods, 2004,2(4):102-113. [百度学术]
王诗竣,宋刚,王瑜,等.中国主导的IODP航次取心所遇问题分析及探讨[J].钻探工程,2023,50(1):10-17. [百度学术]
WANG Shijun, SONG Gang, WANG Yu, et al. Analysis and discussion of the coring problem for China?led IODP voyages[J]. Drilling Engineering, 2023,50(1):10-17. [百度学术]
刘协鲁,陈云龙,阮海龙,等.海底硬岩钻探的现状与前景分析[J].钻探工程,2022,49(1):72-78. [百度学术]
LIU Xielu, CHEN Yunlong, RUAN Hailong, et al. Status and prospect of subsea hard rock drilling[J]. Drilling Engineering, 2022,49(1):72-78. [百度学术]
熊亮,谢文卫,张伟,等.跟管钻进下套管技术在大洋钻探中的应用[J].探矿工程(岩土钻掘工程),2020,47(7):16-22, 35. [百度学术]
XIONG Liang, XIE Wenwei, ZHANG Wei, et al. Application of casing‑while‑drilling technology in ocean drilling[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2020,47(7):16-22, 35. [百度学术]
王世栋,田烈余,王俊珠,等.海洋地质十号船钻探系统及其在海洋地质调查中的应用[J].探矿工程(岩土钻掘工程),2020,47(2):24-29. [百度学术]
WANG Shidong, TIAN Lieyu, WANG Junzhu, et al. Drilling system on Marine Geology 10 Ship and its application in marine geological survey[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2020,47(2):24-29. [百度学术]